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a b s t r a c t 

The global impact of corona virus (COVID-19) has been profound, and the public health 

threat it represents is the most serious seen in a respiratory virus since the 1918 

influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the re- 

sults of epidemiological modelling especially the fractional epidemic model and sum- 

marized different types of fractional epidemic models including fractional Susceptible- 

Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible- 

Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we 

propose a general fractional SEIAR model in the case of single-term and multi-term frac- 

tional differential equations. A feasible and reliable parameter estimation method based 

on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also 

presented to fit the real data using fractional SEIAR model. The effective methods to solve 

the fractional epidemic models we introduced construct a simple and effective analytical 

technique that can be easily extended and applied to other fractional models, and can help 

guide the concerned bodies in preventing or controlling, even predicting the infectious dis- 

ease outbreaks. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

Infectious diseases are generally considered as the enemy of human health in history and have continued to be the ma-

jor causes of suffering and mortality in developing countries. It is well known that the spread of a communicable disease

involves disease-related factors such as infectious agent, made of transmission, incubation period, infectious periods, suscep- 

tibility and resistance. Moreover, infectious disease agents adapt and evolve, so that new infectious diseases have emerged 

and some existing diseases have reemerged. Many identified diseases include Lyme disease (1975), Legionnaire’s disease 

(1976), toxic-shock syndrome (1978), hepatitis C (1989), hepatitis E (1990), and hantavirus(1993). The human immunodefi- 

ciency virus (HIV), which is the etiological agent for acquired immunodeficiency syndrome (AIDS), emerged in 1981 and has 

become an important sexually transmitted disease throughout the world. Antibiotic-resistant strains of tuberculosis, pneu- 

monia, and gonorrhea have evolved. Malaria, dengue, and yellow fever have reemerged and are spreading into new regions 

as climate changes occur. Diseases such as plague, cholera, and hemorrhagic fevers (Bolivian, Ebola, Lassa, Marburg, etc.) 

continue to erupt occasionally [1] . Since December 2019, an increasing number of cases of novel coronavirus (COVID-19) in- 

fected pneumonia (NCIP) have been identified in Wuhan, a large city of 11 million people in central China on 31 December
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2019. The COVID-19 pandemic is now a major global health threat [2] . It is clear that human or animal invasions of new

ecosystems, global warming, environmental degradation, increased international travel, and changes in economic patterns 

will continue to provide opportunities for new and existing infectious diseases [3] . The emerging and reemerging diseases 

have led to a revived interest in infectious diseases. 

During the past 70 years, the study of infectious disease dynamics has matured into a rich interdisciplinary field at 

the intersection of mathematics, epidemiology, computational physics, ecology, evolutionary biology, immunology, sociology, 

and public health. Epidemiology is the branch of science which essentially deals with the mathematical modeling of spread 

of diseases, and mathematical modeling in epidemiology is concerned with describing the spread of disease and its effect 

on people [1] . This itself encompasses a range of disciplines, from biology, mathematics, and engineering to sociology and 

philosophy, all of which are utilized to a better understanding and predicting of the spread of infection [4–7] . 

One of the early triumphs of mathematical epidemiology was a formulation of a model in [8] to predict the behavior of

a disease. In order to control the spread of infectious diseases, researchers have built a great deal of mathematical models

to study the dynamical behavior of infectious diseases. Communicable disease models describing a directly transmitted vital 

or bacterial agent in a closed population. The formulation of a model is a process which includes statement of the relevant

assumptions, relationship among variables, and parameters and relations governing their behaviors. Of course, the choice of 

these factors is critical to the model and depends largely on the particular disease to be modeled and the intended purpose

of that model [6] . Mathematical models and computer simulations are useful experimental tools for building and testing 

theories, assessing quantitative conjectures, answering specific questions, determining sensitivities to changes in parameter 

values, and estimating key parameters from data [9–11] . The practical challenges range from establishing appropriate data 

collection to managing increasingly large volumes of information. The theoretical challenges require fundamental study of 

many-layered, non linear systems in which infections evolve and spread, and where key events can be governed by un- 

predictable pathogen biology or human behavior. Understanding the transmission characteristics of infectious diseases in 

communities, regions, and countries can lead to better approaches to decreasing the transmission of these diseases. Coupled 

to continuous dialogue between decision makers and the multidisciplinary infectious disease community, and by draw- 

ing on new data streams, mathematical models can lay bare mechanisms of transmission and indicate new approaches to 

prevention and control that help to shape national and international public health policy. By fitting these models with epi- 

demiological data proper interpretation can be made through the estimated parameters. The numerical solutions for these 

models will be visualized via a graphical user interface which will allow users to tune the parameters to reveal important

characteristics about the models and infectious diseases. As such, epidemiology modeling can contribute to the design and 

analysis of epidemiological surveys, suggest crucial data that should be collected, identify trends, make general forecasts, 

and estimate the uncertainty in forecasts [5] . 

Although a model for smallpox was formulated and solved by Daniel Bernoulli in 1760 in order to evaluate the effective-

ness of variolation of healthy people with the smallpox virus, deterministic epidemiology modeling seems to have started in 

the 20th century [1] . In 1906 Hamer formulated and analyzed a discrete time model in his attempt to understand the recur-

rence of measles epidemics. His model may have been the first to assume that the incidence (number of new cases per unit

time) depends on the product of the densities of the susceptibles and infectives. Ross was interested in the incidence and

control of malaria, so he developed differential equation models for malaria as a host-vector disease in 1911. Other deter- 

ministic epidemiology models were then developed in papers by Ross, Ross and Hudson, Martini, and Lotka. Starting in 1926 

Kermack and McKendrick published papers on epidemic models and obtained the epidemic threshold result that the density 

of susceptibles must exceed a critical value in order for an epidemic outbreak to occur. Mathematical epidemiology seems to 

have grown exponentially starting in the middle of the 20th century (the first edition in 1957 of Bailey’s book is an impor-

tant landmark), so that a tremendous variety of models have now been formulated, mathematically analyzed, and applied to 

infectious diseases. Reviews of the literature show the rapid growth of epidemiology modeling. The recent models have in- 

volved aspects such as passive immunity, gradual loss of vaccine and disease-acquired immunity, stages of infection, vertical 

transmission, disease vectors, macroparasitic loads, age structure, social and sexual mixing groups, spatial spread, vaccina- 

tion, quarantine, and chemotherapy. Special models have been formulated for diseases such as measles, rubella, chickenpox, 

whooping cough, diphtheria, smallpox, malaria, onchocerciasis, filariasis, rabies, gonorrhea, herpes, syphilis, and HIV/AIDS. 

The breadth of the subject is shown in the books on epidemiology modeling [12,13] . 

The important mathematical model describing the evolution infectious diseases is called compartmental model which 

was originally established by Kermack and Mckendrick (1927) to study the spread of the infectious diseases [8] . In the

compartmental system, the population is divided into three separate compartments, these compartments are defined with 

respect to disease status. Namely, the susceptible compartment S, the infected compartment I, and the removed compart- 

ment R . In the system, the susceptible person get infected and becomes an infected person making contact with an infected

person, and the infected person can be recovered taking treatments, the individuals who reach this class have permanent 

immunity for the relevant disease. This type of model is called the SIR (susceptible-infected-removed) model whose variants 

are widely being studied and applied in studying specific disease such as dengue and leptospirosis epidemics. 

Based on the Kermack-McKendrick model, various epidemic models have been developed in recent decades. The choice 

of which compartments to include in a model depends on the characteristics of the particular disease being modeled and 

the purpose of the model [1] . The passively immune class M and the latent period class E are often omitted, because they

are not crucial for the susceptible-infective interaction. Acronyms for epidemiology models are often based on the flow pat- 

terns between the compartments such as MSEIR, MSEIRS, SEIR, SEIRS, SEIAR, SIR, SIRC, SIRS, SEI, SEIS, SI, SIS, SVIR, and
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SVEIR (where S, V, I and R denote the populations of susceptible, vaccinated, infectious and recovered individuals). Such 

as SIS models in which system there exists a high possibility of recovered individuals to be re-injected. Depending on the

actual disease, more or less of these classes may be used. For example, some disease models only include the S and I

classes, while others may have a forth class which represents a state in which a disease is latent(SEIR models) or has a

cross-immune state(SIRC models) such as Salmonella Bacterial infection. Diseases like Gonorrhea, Chagas and Rocky Moun- 

tain Spotted fevers are modeled using SIS models because people become susceptible as soon as the recover from infection. 

For disease like AIDS, influenza A(H1N1), measles, SEIR model is more appropriate as there is a latent period, when the

virus is present in the host but has still not infected the host. And it is not suitable for modeling endemic diseases as it

cannot display endemic behavior. It is more appropriate to propose multigroup epidemic models to describe the transmis- 

sion dynamics of many infectious diseases in heterogeneous host populations, such as dengue fever, leptospirosis; some 

disease process includes the quarantined state such as measle, mumps, gonorrhea, HIV/AIDS, West-N:le virus; some disease 

state has vaccinated process using SVIR or SVEIR models, investigation of shigellosis and norovirus can use SEIAR model 

while smoking epidemic model using POSQL (the potential smoker, occasional smoker, smoker, temporarily quit smoker 

and permanently quit smoker) model. Over the years, more complex models have been derived. On the human population, 

the memory relates to the individual awareness [14] . In epidemic and endemic area’s awareness about infection will lessen

the contact rate between the different compartments such as human and the mosquitoes in dengue SIR-SI model [15,16] ,

while the vaccinated people tend to have strong awareness of past epidemics, more than susceptible people in SVEIR model. 

There should be a scientific means to combine the models and observations such that experts will be able to extract as

much information from available data as possible before making drastic decisions. Out of this overview, we refer to some 

obstacles in these models and takes a look at some intriguing approaches focusing on development of general structures 

for such models and proposes an alternative approach, namely fractional calculus, whose main features can be briefly sum- 

marized as follows: reflecting memory effects, capturing fractality, multiscale nature and better data fitting. The fractional 

derivative epidemic models provide a powerful instrument for incorporation of memory and hereditary properties of the 

systems as opposed to the integer order models, where such effects are neglected or difficult to incorporate. In addition, 

when fitting data, the fractional models has one more degree of freedom than the integer order model. We therefore, re-

view several articles on fractional epidemic models and count models based on dynamics with derivative of fractional order 

and metapopulation models and propose that developing numerical techniques by which mathematical models are fitted to 

actual data can help guide the concerned bodies in preventing or controlling the infectious disease outbreaks. 

In this paper, we mainly consider the fractional-order epidemic system with the fractional derivatives defined in 

Section 2 and introduce epidemiology modeling by formulating review in Section 3 . Based on the numerical solution for 

the model review, we study the corresponding inverse problem of parameter estimation for the fractional differential equa- 

tion by the novel techniques and optimization algorithm in Section 4 and 5. Then, we take the Norovirus infectious as an

example about application to parameters estimation of fractional SEIAR model in Section 6 and propose a general multi-term 

fractional-order epidemic system with the new fractional orders and parameters in Section 7 , for verifying the efficiency and

accuracy of the proposed methods in dealing with the fractional inverse problem, a numerical example with experimental 

data is studied. Our general epidemic system is capable of providing numerical results that agree very well with the real

data. 

2. Preliminary knowledge 

Fractional calculus is an old yet novel mathematical tool that unifies and generalises the derivative and integral of integer 

order into any arbitrary order. The theory of derivatives of non-integer order originated from the L’Hospital letter to Leibniz 

discussing the meaning of the derivative or what does the derivative of order 1 / 3 or 
√ 

2 of a function mean in 1695. Leading

from that, it has caught the interest of mathematicians during 18th to 19th centuries to study this area. A well-known scien-

tist, Abel in 1823 has become the first scientist to implicitly apply fractional calculus for investigating tautochrone problems. 

Later several fundamental works on various aspects of fractional calculus have appeared [17,18] . As one would expect, since

fractional order differential equation systems allow greater degrees of freedom and incorporate memory effect in the model, 

they have become an excellent tool in modelling epidemiology properties and provide an interesting modeling technique 

in the context of epidemiology. Although the fractional derivative is more complicated than the classical model, there exist 

several numerical methods for solving such systems. Fractional calculus has been the subject of worldwide attention in the 

last decades [19] , due to its broad range of applications in chemistry [20] , biology [21–24] , physics [25] , engineering [26] ,

viscoelastic materials [25] , and image processing [27] . Recently, fractional calculus is experiencing an intensive progress in 

both theory and applications [28] . Fractional differential equations have been shown to be more adequate and can give a

more realistic interpretation of natural phenomena than integer-order derivatives for describing phenomena associated with 

nonlocality, since the fractional-order derivative provides an excellent tool for the description of the memory and heredi- 

tary properties of various materials and processes [29] . Hence, fractional derivatives based on epidemic systems have also 

been used to deal with some epidemic behaviors [30–32] . The classical first-order differential equations was unable to re-

produce the statistical data collected in a real outbreak of the disease with a sufficient degree of accuracy, in general, this

basic/classical model does not provide enough good results. In order to have better results, that fit the reality, more specific

and complicated set of differential equations have been investigated in the literature [33–35] , we propose a slightly modified

system of equations where we now use differential equations of fractional order. 
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Fractional SIR epidemic model equations are obtained from the classical SIR epidemic equations in mathematical mod- 

elling by replacing the first-order derivatives with fractional derivative of order α(0 < α ≤ 1) . Several universal phenomena 

can be modeled to a great degree of accuracy by using the property of these evolution equations. In contrast to integer-

order differential operators, which are local operators, a fractional-order differential operator is non-local in the sense that 

it takes into account the fact that the future state not only depends upon the present state but also on the history of its

previous states. For this realistic property, the usage of fractional-order systems is becoming popular to model the behaviour 

of real systems in various fields of science and engineering. It is to be noted that the present states of any real-life dynamic

system are dependent upon the history of its past states. Such circumstances have motivated the researchers to study the 

SIR epidemic model which has a great physical relevance from the perspective of public health policies and its consideration 

as fractional-order system in allied problems is valid [36] . 

In the recent years, the dynamic behaviors of fractional-order differential systems have received increasing attention. The 

existence of solutions of initial value problems for fractional order differential equations have been studied in the literature 

and the references there in [27,37–39] . Many definitions for fractional derivatives have been wildly studied. In this paper, 

we give three commonly used definitions: the Riemann-Liouville (RL), Caputo and the Gr ̈u nwald-Letnikov (GL) definitions 

[29] . 

Definition 1. The fractional integral a D 

−α
t of function f (t) is defined as follows: 

a D 

−α
t f (t) = 

1 

�(α) 

∫ t 

a 

(t − τ ) α−1 f (τ ) dτ, (1) 

where the fractional order α > 0 and �(z) = 

∫ ∞ 

0 t z−1 e −t dt is the gamma function. 

Definition 2. The Caputo derivative with order α of function f (t) is given as 

C 
a D 

α
t f (t ) = 0 D 

−(n −α) 
t 

d n 

dt n 
f (t ) = 

1 

�(n − α) 

∫ t 

a 

(t − τ ) n −α−1 f (n ) (τ ) dτ, (2) 

where n − 1 < α < n, n ∈ Z + . 

Definition 3. The Riemann-Liouville derivative with order α of function f (t) is defined as 

RL 
a D 

α
t f (t ) = 

d n 

dt n 
a D 

−(n −α) 
t f (t ) = 

1 

�(n − α) 

d n 

dt n 

∫ t 

a 

(t − τ ) n −α−1 f (τ ) dτ, (3) 

where n − 1 < α < n, n ∈ Z + . 

It follows from the definitions of fractional derivatives that the Riemann-Liouville and Caputo definition are not equiva- 

lent, and their relation is expressed by the following: 

C 
a D 

α
t f (t) = 

RL 
a D 

α
t f (t) −

n −1 ∑ 

k =0 

(t − a ) k −α f (k ) (a ) 

�(k − α + 1) 
. (4) 

The Caputo derivative is equivalent to the Riemann-Liouville derivative if the initial conditions f (k ) (a ) = 0 , k = 0 , 1 , · · · , n −
1 . 

Definition 4. The Gr ̈u nwald-Letnikov derivative with order α of function f (t) is defined as follows: 

GL 
a D 

α
t f (t) = lim 

h → 0 
mh = t 

h 

−α
m ∑ 

r=0 

(−1) r 
(

α

r 

)
f (t − rh ) 

= 

n −1 ∑ 

k =0 

f (k ) (a ) t k −α

�(k + 1 − α) 
+ 

1 

�(n − α) 

∫ t 

a 

(t − τ ) n −α−1 f (n ) (τ ) dτ, (5) 

where n − 1 < α < n . 

It follows from the definitions of fractional derivatives that the Gr ̈u nwald-Letnikov fractional derivatives and Riemann- 

Liouville derivatives are equivalent. The Riemann-Liouville and Caputo definition are not equivalent, and their relation can 

be expressed by 

C 
a D 

α
t f (t) = 

RL 
a D 

α
t f (t) −

n −1 ∑ 

k =0 

(t − a ) k −α f (k ) (a ) 

�(k − α + 1) 
= 

RL 
a D 

α
t 

[ 

f (t) −
n −1 ∑ 

k =0 

(t − a ) k f (k ) (a ) 

k ! 

] 

, (6) 

Due to the relation (6) , the Caputo derivative is equivalent to the Riemann-Liouville derivative if the initial conditions satisfy

f (k ) (a ) = 0 , k = 0 , 1 , · · · , n − 1 . 
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3. Model formulation review 

3.1. Mathematical modeling of dengue epidemics (SIR-SI MODEL) 

This global pandemic is attributed to the unprecedented population growth, the rising level of urbanization without 

adequate domestic water supplies, increasing movement of the virus between humans (due to tourism, migration, or in- 

ternational trade), and lack of effective mosquito control [40] . Dengue virus is transmitted to humans through the bite of

infected Aedes mosquitoes, specially Aedes Aegypti. Once infected, a mosquito remains infected for life, transmitting the 

virus to susceptible individuals during feed. Dengue fever is a disease that has been found to cause problems whose mag-

nitude has increased dramatically over the last two decades. In fact, the World Health Organization recently stated that it is

the most important arthropod-borne viral disease of humans [41] . Therefore, it is very important to have a detailed under-

standing of the rules that the spread of the infection follows, so that the control of the vectors is the only possible strategy

to combat the disease at the moment. More recent models indicate that in the coming decades the vectors transmitting the

disease are likely to spread to even larger parts of the world, including most of central and even northern Europe. Some

mathematical models have been proposed to study the outbreak of dengue fever. Nishiura [42] studied the mathematical 

and statistical analyses of the spread of dengue. Hales et al. [43] studied the global distribution of dengue fever on the

basis of vapor pressure, which is a measure of humidity. Rodrigues et al. [44] studied the stability of the classic dengue

disease model. Sardar [45] proposed a mathematical model of dengue transmission with memory. Pooseh et al. [46] stud- 

ied the fractional-order dengue system with Riemann-Liouville-type derivatives of the same order. Diethelm [47] proposed 

a fractional-order model based on the Caputo-type derivative for the simulation of an outbreak of dengue fever, in which 

some orders are the same. However, in these papers, the parameters of the dengue model are given directly. In some papers,

the numerical solution of these systems only provides a poor match with the real number of the infected humans. 

In [46] , the researchers assumed that the host population is divided into three classes: susceptible, S h (t) , individuals

who can contract the disease; infected, I h (t) , individuals capable of transmitting the disease to others; and resistant, R h (t) ,

individuals who have acquired immunity at time t . The total number of hosts is constant, i.e., N h = S h (t) + I h (t) + R h (t) . Sim-

ilarly, they also have two compartments for the mosquito: S m 

(t) and I m 

(t) with N m 

= S m 

(t) + I m 

(t) . The model is described

by the system of differential equations 

dS h (t) 

dt 
= μh N h − (Bβm 

h 

I m 

N h 

+ μh ) S h , 

dI h (t) 

dt 
= Bβm 

h 

I m 

N h 

S h − (ηh + μh ) I h , 

dR h (t) 

dt 
= ηh I h − μh R h , (7) 

dS m 

(t) 

dt 
= μm 

N m 

− (Bβh m 

I h 
N h 

+ μm 

) S m 

, 

dI m 

(t) 

dt 
= Bβh m 

I h 
N h 

S m 

− μm 

I m 

. 

A particular feature of this system can be observed that 

dN h 

dt 
= 

dS h 
dt 

+ 

dI h 
dt 

+ 

dR h 

dt 
= μh (N h − S h − I h − R h ) = 0 , (8) 

i.e., the total number of humans is constant. This fact reflects the observation that indeed the number of people dying from

dengue fever is extremely small. For example, in the outbreak considered below, less than 0.035% of the infected people 

eventually died from the disease. Similarly, 

dN m 

dt 
= 

dS m 

dt 
+ 

dI m 

dt 
= A − μm 

(S m 

+ I m 

) = A − μm 

N m 

, (9) 

where A is a constant recruitment rate for the mosquitoes. Subject to given initial conditions S h (0) , I h (0) , R h (0) , S m 

(0) and

I m 

(0) . The recruitment rate of human and vector populations are denoted as μh N h and μm 

N m 

, respectively. The natural

death rate for humans and mosquitoes is described by the parameters μh and μm 

, respectively. They assumed that B is the

average daily biting (per day) of the mosquito whereas βm 

h and βh m are related to the transmission probability (per bite)

from infected mosquitoes to humans and vice versa. The recovery rate of the human population is denoted by ηh . Therefore,

substitute the first-order derivatives by Riemann-Liouville derivatives of order α we have: 

RL 
0 D 

α
t S h (t) = μh N h − (Bβm 

h 

I m 

N h 

+ μh ) S h , 

RL 
0 D 

α
t I h (t) = Bβm 

h 

I m 

N h 

S h − (ηh + μh ) I h , 

RL 
0 D 

α
t R h (t) = ηh I h − μh R h , (10) 
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RL 
0 D 

α
t S m 

(t) = μm 

N m 

−
(

Bβh m 

I h 
N h 

+ μm 

)
S m 

, 

RL 
0 D 

α
t I m 

(t) = Bβh m 

I h 
N h 

S m 

− μm 

I m 

. 

Note that the fractional system reduces to classical system if α → 1 . Researchers used classical methods to obtain an

approximate solution to the original fractional system and solved numerically using data that outbreak occurred in 2009 in 

Cape Verde and concluded the best order is 0.987, as the percentage error is thirteen as compared to classical model is sixty

two [46] . 

In 2013, the researchers assumed that mosquitoes and humans behave in a different way and used two different or- 

ders of the differential operators, αh and αm 

[47] . They first replaced the fractional calculus system using fractional Caputo 

derivatives as following [47] : 

C 
0 D 

αh 
a S h = μh (N h − S h ) −

βh b 

N h 

S h I m 

, 

C 
0 D 

αh 
a I h = 

βh b 

N h 

S h I m 

− (μh + γ ) I h , 

C 
0 D 

αh 
a R h = γ I h − μh R h , (11) 

C 
0 D 

αm 
a S m 

= μm 

N m 

− βm 

b 

N h 

S m 

I h − μm 

S m 

, 

C 
0 D 

αm 
a I m 

= 

βm 

b 

N h 

S m 

I h − μm 

I m 

. 

To make sure that the right-hand sides of these equations have same dimensions, they modified the right-hand sides to 

make the dimensions match as following [47] : 

C 
0 D 

αh 
a S h = μαh 

h 
(N h − S h ) −

βh b 
αh 

N h 

S h I m 

, 

C 
0 D 

αh 
a I h = 

βh b 
αh 

N h 

S h I m 

− (μαh 

h 
+ γ αh ) I h , 

C 
0 D 

αh 
a R h = γ αh I h − μαh 

h 
R h , (12) 

C 
0 D 

αm 
a S m 

= μαm 
m 

N m 

− βm 

b αm 

N h 

S m 

I h − μαm 
m 

S m 

, 

C 
0 D 

αm 
a I m 

= 

βm 

b αm 

N h 

S m 

I h − μαm 
m 

I m 

. 

The authors numerically simulated using Adams method and used the data based on the 2009 dengue fever outbreak 

in Cape Verde islands. It can be clearly seen that both fractional models provide almost identical results up to the peak of

the number of infected humans whereas the later phase of the epidemic is more accurately modeled by the system using

the modified parameters. The authors have demonstrated that a nonlinear fractional order differential equation model can 

simulate the dynamics of the epidemic much more accurately than the classical model based on first derivatives. In partic- 

ular, it has turned out that the behavior of the human population follows a model of a different order than the mosquito

population. 

In 2019, the researchers proposed a new and general fractional-order dengue fever system using Caputo derivatives with 

different orders [48] : 

λα1 

C 
0 D 

α1 

t S h = μh (N h − S h ) −
βh b 

N h + m 

S h I m 

, 

λα2 

C 
0 D 

α2 

t I h = 

βh b 

N h + m 

S h I m 

− (μh + γ ) I h , 

λα3 

C 
0 D 

α3 

t R h = γ I h − μh R h , (13) 

λα4 

C 
0 D 

α4 

t S m 

= μm 

(N m 

− S m 

) − βm 

b 

N h 

S m 

I h , 

λα5 

C 
0 D 

α5 

t I m 

= 

βm 

b 

N h + m 

S m 

I h − μm 

I m 

, 

where C 
0 
D 

αi 
t denotes the Caputo fractional derivative with order αi . For searching a better dengue fever system which is 

capable of providing numerical results that agree much better with the real data, they present the multi-term fractional 

order dengue model as follows [48] : 

C 
0 D 

α1 , ··· ,αr ,α0 

t S h = μh (N h − S h ) −
βh b 

N + m 

S h I m 

, 

h 
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C 
0 D 

α1 , ··· ,αr ,α0 

t I h = 

βh b 

N h + m 

S h I m 

− (μh + γ ) I h , 

C 
0 D 

α1 , ··· ,αr ,α0 

t R h = γ I h − μh R h , (14) 

C 
0 D 

β1 , ··· ,βr ,β0 

t S m 

= μm 

(N m 

− S m 

) − βm 

b 

N h 

S m 

I h , 

C 
0 D 

β1 , ··· ,βr ,β0 

t I m 

= 

βm 

b 

N h + m 

S m 

I h − μm 

I m 

, 

where the 0 D 

α1 , ··· ,αr ,α0 
t and 0 D 

β1 , ··· ,βr ,β0 
t are defined as 

C 
0 D 

α1 , ··· ,αr ,α0 

t x (t) = 

r ∑ 

i =1 

λi · 0 D 

αi 

t x (t) + λ0 · 0 D 

α0 

t x (t) , (15) 

and 

C 
0 D 

β1 , ··· ,βr ,β0 

t x (t) = 

r ∑ 

i =1 

λ′ 
i · 0 D 

βi 

t x (t) + λ′ 
0 · 0 D 

β0 

t x (t) , (16) 

with 0 < α1 < · · · < αr < α0 = 1 , 0 < β1 < · · · < βr < β0 = 1 , and the weighted coefficient λi , λi (i = 1 , 2 , · · · , r) ∈ R + which

are used to retain the same units on both sides of the equations. 

To verify the effectiveness and correctness of the proposed methods, they used the data of 2009 dengue fever outbreak 

on the Cape Verde island given by Diethelm as the known data to perform the inverse problem by parameter estimation

method [48] . They studied the effect of every parameter on the number of infected humans with the other parameters fixed.

The results showed a better fitting between the numerical solutions of the multi-term fractional-order dengue fever model 

with the estimated parameter values and the real data than other models. Hence, this paper provides effective parameter 

estimation methods for a fractional application in the dengue fever model. 

In [49] , a study on a basic fractional order epidemic model of dengue transmission is conducted using the SIR-SI model,

including the aquatic phase of the vector. In the formulation of the model, the total number of human and mosquito pop-

ulation is assumed to be constant. Assumed that the infection is produced by only one serotype of dengue viruses. The

dynamics of female Aedes mosquito includes aquatic phase, A m 

, and adult mosquito stage. The adult stage is divided into

two compartments which are susceptible M s and infectious M i . The total human population is partitioned into three com- 

partments that are susceptible H s , infectious H i , and recovered H r individuals. The fractionalization is done following the 

work of Diethelm [47] . The governing equation is as follows: 

C 
0 D 

α
t A m 

= qφ(1 − A m 

C 
) M − (σA + μA ) A m 

, 

C 
0 D 

α
t M s = σA A m 

− b αβm 

H 

M s H i − μm 

M s , 

C 
0 D 

α
t M i = 

b αβm 

H 

M s H i μm 

M i , (17) 

C 
0 D 

α
t H s = μh (H − H s ) − b αβh 

H 

H s M i , 

C 
0 D 

α
t H i = 

b αβh 

H 

H s M i − (γh + μh ) H i , 

C 
0 D 

α
t H r = γh H i − μh H r , 

with the condition of N h = H = H s + H i + H r , we have H r = H − H s + H i . Thus, the authors wrote down the corresponding

system for human population exclusive of the H r differential equation as follows [49] : 

C 
0 D 

α
t H s = μh (H − H s ) − b αβh 

H 

H s M i , 

C 
0 D 

α
t H i = 

b αβh 

H 

H s M i − (γh + μh ) H i , 

C 
0 D 

α
t A m 

= qφ(1 − A m 

C 
) M − (σA + μA ) A m 

, (18) 

C 
0 D 

α
t M s = σA A m 

− b αβm 

H 

M s H i − μm 

M s , 

C 
0 D 

α
t M i = 

b αβm 

H 

M s H i μm 

M i . 

In this study [49] , the values related to the human describe the reality of an infected period in Malaysia. The data used

is based on the dengue fever cases recorded in Malaysia for 2016, taken from The Ministry of Health Malaysia. Table 1

summarised the fractional-order dengue epidemics models and the contribution to the research works in recent years. 
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Table 1 

Summary of dengue epidemics models. 

Year Author Model Contribution 

2011 Pooseh et al. [46] fractional-order SIR-SI model with 

Riemann-Liouville derivatives of the same 

order 

The best order α is 0.987. The percentage error is 13 as 

compared to classical model is 62. 

2013 Diethelm et al. [47] fractional-order SIR-SI model with Caputo 

derivatives of two different orders 

A particularly good approximation was obtained with 

αh = 1 and αm ∈ [0 . 75 , 0 . 8] . The improved simulation 

results by setting αm = 0 . 95 and μm = 0 . 196 . 

2014 Al-Sulami et al. [50] fractional-order SIR-SI model with Caputo 

derivatives of the same order 

It very sensitive to the order of differentiation α: a small 

change in α may result in a big change. 

2015 T. Sardar et al. [14] fractional-order SIR-SI model with Caputo 

derivatives of two different orders considering 

the dimension match of the system 

Increase in human memory ( α → 0 ) will reduce the 

dengue transmission; Increase in memory of vectors 

( β → 0 ) will increase the dengue transmission. 

2018 Hamdan et al. [51] fractional-order SI-SIR model with Caputo 

derivatives by including the aquatic stages 

DFE is locally asymptotically stable when R 0 < 1 and is 

unstable when R 0 > 1 . 

2019 Hamdan et al. [49] fractional-order SIR-SI model using Caputo 

derivatives including aquatic phase 

The disease-free equilibrium of system is locally 

asymptotically stable if the corresponding R 0 < 1 

2019 T. Li et al. [48] fractional-order SIR-SI model using Caputo 

derivatives with different orders 

A better fitting between the numerical solutions of the 

multi-term fractional-order dengue model with the 

estimated parameter values and the real data than other 

models. 

2020 Ozlem Defterli [52] Fractional-order vector-host dengue model 

using Caputo derivatives by including 

temperature dependent features in 

entomological parameters. 

Stability analysis is performed and the local asymptotic 

stability of the disease-free equilibria is obtained. The 

highest danger of dengue transmission exists at 

temperature 28 ◦C. 

 

 

 

 

 

 

 

 

 

3.2. Mathematical modeling of leptospirosis epidemics (SIR-SI MODEL) 

Leptospirosis disease is an important infectious disease. This kind of infection occurs in urban areas of industrialized and 

developed countries and also in the rural areas. The people of the city who walk in dirty water are mostly infected. Workers

planting rice, sewer cleaners, cleaning canals workers, and agriculture labor get the disease easily. The disease flourishes 

due to delay in diagnosis and unavailability of clinical infrastructure. The cause of the disease is bacteria. It is potentially

fatal infection of brain, kidney, liver, heart, and lung. The people who can get infection are those who have contact with

infected animals, soil, or water in which the bacteria is present. The outdoor people, who work with animals, face the risk

of leptospirosis infection, similarly workers in farms, sewer, mine, slaughter houses, dairy farmers, and animal caretakers and 

those who work with fishes and military personnel. Those people who work outdoors like swimming, rafting, and kayaking 

also face the risk of infection. 

The researchers had made many efforts for modeling of leptospirosis epidemic disease since 2011 [53–58] . They proposed 

a mathematical model that describes the epidemic leptospirosis disease given by: 

dS h (t) 

dt 
= b 1 − μh S 

h − β2 S 
h I v − β1 S 

h I h + λh R 

h , 

dI h (t) 

dt 
= β2 S 

h I v + β1 S 
h I h − (μh + δh + γh ) I 

h , 

dR 

h (t) 

dt 
= γh I 

h − μh R 

h − λh R 

h , (19) 

dS v (t) 

dt 
= b 2 − γv S 

v − β3 S 
v I h , 

dI v (t) 

dt 
= β3 S 

v I h − (γv + δv ) I 
v , 

where S h (t) , I h (t) , R h (t) , S v (t) and I v (t) represent the population of susceptible human, infected human, recovered human,

susceptible vector, and infected vector at time t, respectively. The rate at which the population of human increases is shown

by b 1 . The natural mortality rate for the human population is μh ; β1 , β2 , and β3 represent the transmission coefficients.

The parameter λh shows the individuals who become susceptible again. The death from the disease that occurs to humans is 

shown by δh . The rate of recovery from infection for the human is denoted by γh . The growth rate of the vector population

is represented by b 2 ; γv is the natural death rate for vector and disease related death rate for the vector is δv . The fractional

model presented by [54] is given by system above which represents a system of nonlinear ODE and is given as follows: 

C 
0 D 

α
t S 

h (t) = b 1 − μh S 
h − β2 S 

h I v − β1 S 
h I h + λh R 

h , 

C 
0 D 

α
t I 

h (t) = β2 S 
h I v + β1 S 

h I h − (μh + δh + γh ) I 
h , 

C 
0 D 

α
t R 

h (t) = γh I 
h − μh R 

h − λh R 

h , (20) 
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C 
0 D 

α
t S 

v (t) = b 2 − γv S 
v − β3 S 

v I h , 

C 
0 D 

α
t I 

v (t) = β3 S 
v I h − (γv + δv ) I 

v . 

The parameter which describes the general response expression in representing the order of fractional derivative gives 

different results for different values. Obviously, the integer-order system can be viewed as a special case of the fractional- 

order system by putting the time-fractional order of the derivative equal to one. To put it simple, for the higher in order,

the behavior of the fractional order system is the same in the case of integer order. This is the first work, which is available

on the epidemic model of leptospirosis in fractional order. They solved the fractional systems and compared with classical 

Runge Kutta and concluded that the results obtained by multi-step generalized differential transform have a good agreement 

with the Runge Kutta of order 4 [59] . 

3.3. Mathematical modeling of salmonella bacterial infection epidemics(SIRC MODEL) 

The Salmonella infection is a major zoonotic disease which is transmitted between humans and other animals. Most 

persons infected with Salmonella develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness 

usually lasts 4 to 7 days, and most persons recover without treatment. However, in some persons, the diarrhea may be so

severe that the patient needs to be hospitalized. Salmonella live in The intestinal tracts of humans and other animals, in-

cluding birds. Salmonella are usually transmitted to humans by eating foods contaminated with animal feces. Contaminated 

foods usually look and smell normal. Contaminated foods are often of animal origin, such as beef, poultry, milk, or eggs, but

any food, including vegetables, may become contaminated. Therefore, Salmonella is considered as a serious problem for the 

public health throughout the world. There are no doubts that mathematical modeling of Salmonella bacterial infection plays 

an important role in gaining understanding of the transmission of the disease in specific environment and in predicting the 

behavior of any outbreak. 

The researchers introduced a new compartment into SIR model, which is called cross-immune compartment to be called 

SIRC model [60] . The new compartment cross-immune describes an intermediate state between the fully susceptible and the 

fully protected one. Recently, the fractional order SIRC model of influenza, a disease in human population, was investigated 

[61] . The researchers considered the fractional order SIRC model associated with evolution of Salmonella bacterial infection 

in animal herds. However, they took into account the disease induced mortality rate in the model. Qualitative behavior of the

fractional order SRIC model was investigated and numerical simulations of the fractional order SRIC model were provided 

to demonstrate the effectiveness of the proposed method by using implicit Euler’s method. 

In [62] , the authors assumed that the Salmonella infection spreads in animal herds which are grouped as four com-

partments, according to their infection status: S(t) is the proportion of susceptible individuals at time t (individuals that 

do not have the bacterial infection), I(t) is the proportion of infected individuals (that have the bacterial infection), R (t) is

the proportion of recovered individuals (that recovered from the infection and have temporary immunity), and C(t) is the 

proportion of cross-immune individuals at time t . The total number of animals in the herd is given by N = S + I + R + C.

They considered that initially all the animals are susceptible to the infection. Once infected, a susceptible individual leaves 

the susceptible compartment and enters the infectious compartment where it then becomes infectious. The infected ani- 

mals pass into the recovered compartment. The individuals who have recovered from the disease have temporary immunity 

and grouped into C(t) compartment. Therefore, the disease transmission model consists of nonnegative initial conditions 

together with system of equations as follows: 

dS(t) 

dt 
= μN + ηC(t) − (βI(t) + μ) S(t) , 

dI(t) 

dt 
= βS(t) I(t) + σβC(t) I(t) − (θ + m + μ) I(t) , (21) 

dR (t) 

dt 
= (1 − σ ) βC(t ) I(t ) + θ I(t) − (μ + δ) R (t) , 

dC(t) 

dt 
= δR (t) − βC(t ) I(t ) − (η + μ) C(t) , 

where parameter μ denotes the mortality rate in every compartment and is assumed to be equal to the rate of newborns

in the population. β is the contact rate and also called transmission from susceptible to infected. η−1 is the cross immune

period, θ−1 is the infectious period, δ−1 is the total immune period, and σ is the fraction of the exposed cross immune

individuals who are recruited in a unit time into the infective subpopulation [60] , [63] . The disease induces mortality rate

is noted by m . 

Although a large number of work have been done in modeling the dynamics of epidemiological diseases, it has been 

restricted to integer-order (delay) differential equations. In recent years, it has turned out that many phenomena in different 

fields can be described very successfully by models using fractional order differential equations (FODEs). The author in 

[62] introduced fractional order into model aboved. They assumed that s (t ) = 

S(t) 
N , i (t ) = 

I(t) 
N , r(t ) = 

R (t) 
N , c(t ) = 

C(t) 
N , where

N is the total number of population, and the fractional model takes the form as follows: 

C 
0 D 

α1 s (t) = μ + ηc(t) − (βi (t) + μ) s (t) , 
t 
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C 
0 D 

α2 

t i (t) = βs (t) i (t) + σβc(t) i (t) − (θ + m + μ) i (t) , (22) 

C 
0 D 

α3 

t r(t) = (1 − σ ) βc(t ) i (t ) + θ i (t) − (μ + δ) r(t) , 

C 
0 D 

α4 

t c(t) = δr(t) − βc(t ) i (t ) − (η + μ) c(t) . 

The researchers provided a fractional order SIRC epidemic model with Salmonella bacteria infection and derived the suffi- 

cient conditions to preserve the asymptotic stability of infection-free and endemic steady states. The fractional order dy- 

namical models are more suitable to model biological systems with memory than their integer-orders and the presence of 

a fractional differential order into a corresponding differential equation leads to a notable increase in the complexity of the 

observed behavior and enlarges the stability region of the solutions. 

3.4. Mathematical modeling of H1N1 epidemics(SEIR MODEL) 

The pandemic virus A(H1N1)/09 is a flu virus of swine, avian, and human origin that was first identified in April 2009 in

Mexico and the USA [64] . The virus soon spread to the rest of the world and on June 11, 2009; the WHO declared the new

influenza A(H1N1) a pandemic [64] . The transmission of the virus AH1N1 is only possible through effective contacts of a

susceptible individual with an infectious individual. Typical interventions to control the spread include quarantine, isolation, 

travel restrictions, closing of public places, fear-based self-quarantine, and cancelation of events [64] . These interventions 

have economic costs to individuals and society related to lost work, increased school absenteeism, and decreased business 

revenues [65,66] . A pandemic influenza A(H1N1) vaccine became available in the USA in October 2009 [67] . Every year,

approximately 36,0 0 0 people die from seasonal influenza or flu-related causes only in the USA [67] . Additionally, since

there are thousands deaths worldwide due to the A(H1N1)/09 virus, it is important to understand the dynamics regarding 

the evolution of the A(H1N1)/09 virus. 

In order to study the dynamics of H1N1 influenza virus spread, several models have been presented. For instance, the 

classical SIR epidemiological model with a seasonal forced function has been used to model the influenza A(H1N1)/09 virus 

spread in the US population [68] . The classical SEIR model has been used to predict the infected individuals, hospital bed

shortage, and effectiveness of vaccination in a city of Japan and mixed with statistical methods in order to forecast the

prevalence of A(H1N1) in Singapore [65,69] . However, when considering influenza, the SEIR model, which is an immediate 

extension of the original SIR model, is more realistic. The SEIR model introduces a fourth compartment corresponding to 

the incubation (disease latency) stage when a person is infected but still not infectious enough to be able to transmit it.

The SEIR model has been applied in epidemics that include a latency and recovery periods such dengue, influenza, rabies, 

and tuberculosis [44,70–73] . For instance, the SEIR model has been used to describe real data of tuberculosis, and the least

squares fitting has been used for estimating the model parameters [72] . Furthermore, the SEIR model has been used to

explore effective control and prevention measures for the human rabies in China, where it is one of the major public health

problems [73] . 

In [74] , the authors proposed the population scaled fractional SEIR using Caputo derivatives of order α. The proposed 

model was then fitted to the known real data related to H1N1 infected cases. The SEIR epidemiological model considers that

the total population N(t) is divided into four subpopulations: S(t) susceptible, E(t) people incubating the virus, infectious 

I(t) , and recovered R (t) subpopulations. In addition, the newborn children become susceptible at a rate μ (birth rate), and

individuals leave the system by death at a rate d. An individual in S(t) flows to E(t) because people in I(t) transmit A(H1N1)

virus by effective contacts at rate β . Finally, they consider that once an individual is recovered, he or she acquires permanent

immunity [67] . The other parameters of the model are ρ, recovery rate from the infection and latent individuals become

infected at rate �. The population-scaled SEIR model (without loss of generality) with constant population size (d = μ) is

given by [74] : 

dS(t) 

dt 
= μ − βS(t) I(t) − μS(t) , 

dE(t) 

dt 
= βS(t) I(t) − (μ + �) E(t) , (23) 

dI(t) 

dt 
= �E(t) − (μ + ρ) I(t) , 

dR (t) 

dt 
= ρI(t) − μR (t) . 

Then, the authors considered the SEIR fractional model using Caputo derivatives of order α as follows [74] : 

C 
0 D 

α
t S(t) = μα − βαS(t) I(t) − μαS(t) , 

C 
0 D 

α
t E(t) = βαS(t) I(t) − (μα + �α) E(t) , (24) 

C 
0 D 

α
t I(t) = �αE(t) − (μα + ρα) I(t) , 

C 
0 D 

α
t R (t) = ρα I(t) − μαR (t) . 

In the fractional model, the next state depends not only upon its current state but also upon all of its historical states.

The authors tested the proposed SEIR fractional order model with real data. The parameter values of the model were esti-
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mated minimizing the mean square error between the fractional model outputs and the real data of influenza A(H1N1). The 

proposed fractional model epidemic peak adjusts better to the peak of the real data and gives better results in terms of the

mean square error then with the classical SEIR model. This fact is important from a health point of view since it translates

to a longer period with a high number of infected individuals, which can affect the health system. It is concluded that the

fractional order epidemic model produces numerical results that agree very well with the real data of influenza A(H1N1) 

and provides useful information for the understanding, prediction, and control of the transmission of different epidemics 

are in many cases a more powerful approach to epidemiological models, because one can choose the order α of fractional 

differentiation that best corresponds to real data. 

3.5. Mathematical modeling of measles epidemics(SEIR MODEL) 

Measles is a higher contagious viral disease caused by infection of Paramyxovirus, generally of the genus Morbillivirus. It 

is a serious disease of childhood that can lead to complications and death. For example, measles caused about 7500 deaths

in the United States in 1920 and still causes about 1 million deaths worldwide each year [75] . Measles vaccinations are given

to children between 6 and 18 months of age, but the optimal age of vaccination for measles seems to vary geographically.

Its incubation period is located somewhere between 9 and 12 days and its infectivity period between 4 and 9 days. Measles

is highly present in early childhood and its epidemics are commonly related to aggregation of children at schools or child-

care centres. It is recommended to get vaccinated against it at around 18 months of age and have a booster at 4 to 5 years

of age. The disease is particularly characterized by its low mortality and high morbidity. Measles will continue to circulate 

in a community with a higher number of susceptible hosts by birth of children. However, in communities which generate 

insufficient new hosts, measles will die out. This theory was introduced in 1957 by Bartlett [76] , who brought out the critical

population size for a community and referred it to be the minimum number supporting measles. 

In [77] , the authors formulated the system modeling the fractional temporal spread of measles in a human population. 

In the model, a population supposed constant is divided into different classes, disjoint and based on their disease status. 

At time t , S = S(t ) is the fraction of population representing individuals susceptible to measles, E = E(t) is the fraction

of population representing individuals exposed to measles, I = I(t) is the fraction of population representing individuals 

infectious with measles, and R = R (t) is the fraction of population representing individuals that recovered from measles. 

They assumed that all recruitment is done by birth into the class of susceptible and occurs at constant birth rate b. The rate

constant for nondisease related death is μ; thus 1 
μ is the average lifetime. They used the standard mass balance incidence

expressions β(t) SI to indicate successful transmission of measles due to effective contacts dynamics in the population by 

infectious individuals. Once infected, a fraction of exposed people becomes infectious with a constant rate σ, so that 1 
σ is

the average incubation period. Some infectious individuals will recover after a treatment or a certain period of time at a

rate constant ζ , making 1 
ζ

the average infectious period. The formulated fractional temporal SEIR measles model is given by 

[77] : 

C 
0 D 

α
t S = b − (β(t) I + μ) S, 

C 
0 D 

α
t E = β(t) SI − (σ + μ) E, (25) 

C 
0 D 

α
t I = σE − (ζ + μ) I, 

C 
0 D 

α
t R = ζ I − μR. 

This model was solved by predictor corrector scheme of Adams Bashforth Moulton type [77] . The authors had started

by showing nonnegativity of solutions to the fractional metapopulation model which defined as system of differential equa- 

tions generated by discrete spatial models with continuous time and have been thoroughly analyzed in numeral articles 

[78,79] thereby addressing the problem of its well posedness. They had also shown that the disease-free equilibrium of the 

model is linearly stable if the spectral radius (the basic reproduction number) R 0 ≤ 1 and unstable if R 0 ≥ 1 . They simulated

numerical data based on online magazine Otago Daily Time. Numerical simulations shown that, even in fractional dynamics 

of measles in metapopulation, the epidemic will not occur in communities which generate insufficient new hosts, which is 

in accordance with the theory of Bartlett. This work generalizes the preceding ones with the inclusion of the fractional dy-

namics to a combined SEIR and metapopulation model, giving at the same time one of the multiple applications of fractional

differential equations. 

In 2018, a fractional temporal SEIR measles mode was considered. The model consists of four coupled time fractional 

ordinary differential equations. The time-fractional derivative is defined in the Caputo sense. In this model, the population 

is spatially spread into four patches representing four cities. The authors considered the set P = { A, B, W, D } representing

four patches. The m 

c 
xy is the rate of travel from city x to city y in compartment c with c = S, E, I, R which represents the

transfer rate of individuals in the compartment c of city x moving to the same compartment c in city y. It is clear that

m 

c 
xx = 0 , for all x ∈ P and c ∈ { S, E, I, R } . The basic metapopulation model is given by [80] 

dS x 

dt 
= b x − (βx (t) I x + μx ) S x + 

∑ 

y ∈ P 
S y m 

S 
yx − S x 

∑ 

y ∈ P 
m 

S 
xy , 

dE x 

dt 
= βx (t) S x I x − (σx + μx ) E x + 

∑ 

y ∈ P 
E y m 

E 
yx − E x 

∑ 

y ∈ P 
m 

E 
xy , (26) 
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dI x 

dt 
= σx E x − (ξx + μx ) I x + 

∑ 

y ∈ P 
I y m 

I 
yx − I x 

∑ 

y ∈ P 
m 

I 
xy , 

dR x 

dt 
= ξx I x − μx R x + 

∑ 

y ∈ P 
R y m 

R 
yx − R x 

∑ 

y ∈ P 
m 

R 
xy . 

The fractional temporal model is formulated by the following differential equations with the fractional derivative in the 

sense of Caputo. 

C 
0 D 

α
t S x = b x − (βx (t) I x + μx ) S x + 

∑ 

y ∈ P 
S y m 

S 
yx − S x 

∑ 

y ∈ P 
m 

S 
xy , 

C 
0 D 

α
t E x = βx (t) S x I x − (σx + μx ) E x + 

∑ 

y ∈ P 
E y m 

E 
yx − E x 

∑ 

y ∈ P 
m 

E 
xy , (27) 

C 
0 D 

α
t I x = σx E x − (ξx + μx ) I x + 

∑ 

y ∈ P 
I y m 

I 
yx − I x 

∑ 

y ∈ P 
m 

I 
xy , 

C 
0 D 

α
t R x = ξx I x − μx R x + 

∑ 

y ∈ P 
R y m 

R 
yx − R x 

∑ 

y ∈ P 
m 

R 
xy . 

where � is the Gamma function. This fractional measles model was used to construct the analytical technique and predictor- 

corrector scheme. The authors also explored the average error estimates for the measles model to verify with the theoretical 

analysis. They used the GMMP scheme (Gorenflo-Mainardi-Moretti-Paradisi) [81] to show the accuracy of the analytical 

solution for the time coupled fractional differential equations. The best features of the techniques proposed in this work are 

that they can be easily extended to other fractional epidemic models. The authors limited the discussions on the effect of

differential order but put more effort into constructing a simple and effective analytical technique that can be easily applied 

to other fractional models. In some circumstances, the solutions from the derived techniques can also help to understand 

the underlying mechanisms that influence the epidemic pattern. It can be concluded that the analytical technique presented 

in this paper is reliable and yet an alternative for the analytical evaluation to other time fractional differential equations 

models. 

3.6. Mathematical modeling of an anti-SARS vaccine (SVEIR MODEL) 

The World Health Organization (WHO) reported the emergence of a new respiratory disease known as severe acute 

respiratory syndrome (SARS) in March 2003. The disease, caused by a coronavirus, spread rapidly across Asia, Europe and 

North America, with the highest prevalence in Asia. SARS resulted in about 900 deaths and 8000 infections globally. 

Owing to the rapid transmissibility of the virus and the fear of a large epidemic, the WHO spearheaded an international

effort to combat the spread of SARS. Absent a definitive anti-SARS treatment or vaccine, these effort s were based on the

quarantine of suspected cases and isolation of individuals infected with SARS-CoV to stop them from infecting others. Many 

advances have been made towards the design of a vaccine for SARS, and some vaccines are undergoing clinical trials. This is

a welcome development since, historically, vaccines have been and continue to be very useful in preventing illness or death 

of millions of individuals. 

Over the past few decades, a large number of simple compartmental mathematical models of the general form SVI or 

SVIR (where S, V, I and R denote the populations of susceptible, vaccinated, infectious and recovered individuals) have been 

used in the literature to assess the impact or potential impact of imperfect vaccines for combatting the spread of some

human diseases. While in some of these studies the vaccine is only given to people newly recruited into the population,

such as newborns (cohort vaccination), in many others, a proportion of susceptible individuals is continuously vaccinated. 

In other studies, such as Arino et al. [82] , both cohort and continuous vaccination are provided. Gandon et al. [83] provided

a nice study on some of the epidemiological and evolutionary consequences associated with the use of imperfect vaccines 

using an SVI model with two infected components (unvaccinated infected and vaccinated infected individuals). Their study, 

which is based on an imperfect vaccine which may decrease probability of infection and/or may decrease the growth rate 

of parasites within the host, shows that eradication success depends on the type of vaccine and vaccine coverage used. The

model constructed in the current paper is an extension of the standard SVIR models, including a new compartment for the

latent class (an essential feature of the SARS transmission dynamics). 

The development of the mathematical model in [84] is based on subdividing a given SARS-affected community into five 

compartments: susceptible, S(t) , vaccinated, V (t) , asymptomatic, E(t) , symptomatic, I(t) , and recovered, R (t) , individuals.

The total population size is N(t) = S(t) + V (t) + E(t) + I(t) + R (t) . The rates of change of the populations in each compart-

ment are represented by the following equations: 

dS 

dt 
= � − βSI − ξS − μS, 

dV = ξS − (1 − τ ) βV I − μV, 

dt 
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dE 

dt 
= βSI + (1 − τ ) βV I − αE − μE, (28) 

dI 

dt 
= αE − δI − dI − μI, 

dR 

dt 
= δI − μR. 

In [85] , Wei et al. proposed a new SVEIR epidemic disease model with time delay 

dS 

dt 
= μ − μS(t) − βS(t) I(t) , 

dV 

dt 
= −β1 V (t) I(t) − γ1 V (t) − μV (t) , 

dE 

dt 
= βS(t) I(t) + β1 V (t) I(t) − βe −μτ S(t − τ ) I(t − τ ) − β1 e 

−μτV (t − τ ) I(t − τ ) − μE(t) , (29) 

dI 

dt 
= βe −μτ S(t − τ ) I(t − τ ) + β1 e 

−μτV (t − τ ) I(t − τ ) − γ I(t) − μI(t) − αI(t) , 

dR 

dt 
= γ1 V (t) + γ I(t) − μR (t) . 

They analyzed the dynamic behavior of the model under pulse vaccination. Pulse vaccination is an effective strategy for the 

elimination of infectious disease. Using the discrete dynamical system determined by the stroboscopic map, they obtain an 

infection-free periodic solution. They also showed that the infection-free periodic solution is globally attractive when some 

parameters of the model under appropriate conditions. The permanence of the model was investigated analytically. 

In [86] , the authors proposed a fractional-order mathematical 5 D dynamical system modelling an SVEIR model of in- 

fectious disease transmission in a chemostat is proposed. The model developed here has five components, S, V, E, I and R

known as SVEIR model of infectious disease transmission in a chemostat. The population are classified as Susceptible indi- 

viduals (S), Vaccinated individuals ( V ), Exposed individuals ( E), Infected individuals ( I), and Recovered individuals ( R ) and

modelled by the following five-dimensional dynamical system of Fractional Differential Equations (FDEs) with the Caputo 

fractional derivative: 

C 
0 D 

α
t S = D (S in − S) − (m S + p) S − μ(I) S, 

C 
0 D 

α
t V = pS − (D + m V ) V − θμ(I) V, 

C 
0 D 

α
t E = μ(I)(S + θV ) − (D + m E + ε) E, (30) 

C 
0 D 

α
t I = εE − (D + m I + γ ) I, 

C 
0 D 

α
t R = γ I − (D + m R ) R, 

where p, θ, 1 /ε and 1 /γ are the vaccination rate, the vaccination factor reducing the risk of infection after vaccination,

the average latency time spent in compartment E before moving to compartment I and the average duration elapsed in 

compartment I before recovery ( R ), respectively. m S , m V , m E , m I and m R are the mortality rates of susceptible, vaccinated,

exposed, infected and recovered individuals, respectively. μ represents the saturated incidence rate. A profound qualitative 

analysis was given and the analysis of the local and global stability of equilibrium points was carried out. 

3.7. Mathematical modeling of HIV/AIDS epidemics (SIJA MODEL) 

Human immunodeficiency virus (HIV), which leads to acquired immunodeficiency syndrome (AIDS), is a pandemic which 

is almost very dangerous and fatal if untreated and uncontrolled. Over 35 million people have died from AIDS-related ill- 

nesses since the start of the epidemic in 1981. Viral transmission typically occurs following exposure to cell-associated virus 

through: (1) contaminated blood products or syringes, (2) sexual intercourse and (3) mother to child in utero, during birth, 

or through breastfeeding. An individual may advance through several infective stages before developing full blown AIDS 

[87] . Virus number in the blood is a major indicator of the disease stages. Sometimes these stages are meant to correspond

to CD4+ T-cell count ranges. In a normal healthy individual’s peripheral blood, the level of CD4+ T-cells is between 800 and

1200 /mm 

3 and once this number reaches 200 or below in an HIV infected patient, the person is classified as having AIDS.

Without drug treatment, HIV-1 infection is nearly uniformly fatal within 5–10 years. With drug therapies, such as HAART 

(highly active antiretroviral therapy), treated individuals can live longer free of HIV-related symptoms [88] . 

Mathematical models have been used extensively in research into the epidemiology of HIV/AIDS to help improve our 

understanding of the major contributing factors to the pandemic. From the initial models of May and Anderson [89–91] ,

various refinements have been added into modelling frameworks, and specific issues have been addressed by researchers 

[92–95] . The book [96] by Castillo-Chavez contains a review of HIV/AIDS modeling papers including single-group models, 

multiple-group models, and epidemiologic-demographic models. It also contains papers on AIDS models with HIV class age, 

variable infectivity, distributions for the AIDS incubation period, heterogeneity, and structured mixing. 
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To construct the model, the authors in [97] first divided the total population into a susceptible class of size S and an

infectious class before the onset of AIDS and a full-blown AIDS group of size A which is removed from the active population.

Based on the facts that the infectious period is very long ( ≥ 10 years), the researchers further considered several stages of

the infectious period. For simplicity, they only consider two stages according to clinic stages and papers [88,95] i.e., the

asymptomatic phase ( I) and the symptomatic phase ( J). Thus, they first considered the following model [97] : 

RL 
0 D 

α
t S(t) = μK − cβ(1 + bJ) S − μS, 

RL 
0 D 

α
t I(t) = cβ(1 + bJ) S − (μ + k 1 ) I + γ J, (31) 

RL 
0 D 

α
t J(t) = k 1 I − (μ + k 2 + γ ) J, 

RL 
0 D 

α
t A (t) = k 2 J − (μ + d) A, 

where, μK is the recruitment rate of the population, μ is the number of death rate constant. c is the average number of

contacts of an individual per unit of time. β and bβ are probability of disease transmission per contact by an infective in

the first stage and in the second stage, respectively. k 1 and k 2 are transfer rate constant from the asymptomatic phase I

to the symptomatic phase J and from the symptomatic phase to the AIDS cases, respectively. γ is treatment rate from the 

symptomatic phase J to the asymptomatic phase I. d is the disease-related death rate of the AIDS cases. 

In [98] , Kheiri and Jafari presented a fractional order model of the transmission dynamics HIV/AIDS with random testing 

and contact tracing in Cuba, that is the generalization, to fractional order, of the model given by Mastroberardino et al.

[99] : 

C 
0 D 

α
t S(t) = � − (ε 1 u 1 β + (1 − u 1 ) β) X S − μS, 

C 
0 D 

α
t X (t) = (ε 1 u 1 β + (1 − u 1 ) β) X S − κX Y − (μ + γ + κ ′ ) X, (32) 

C 
0 D 

α
t Y (t) = κX Y + κ ′ − (μ + (ε 2 u 2 γ + (1 − u 2 ) γ )) Y, 

C 
0 D 

α
t Z(t) = γ X + (ε 2 u 2 γ + (1 − u 2 ) γ ) Y − μ′ Z, 

where 0 ≤ α ≤ 1 . The model parameters are: 

- �: constant recruitment rate of susceptible population; 

- β : recruitment rate of new members of HIV-infected population infected by sexual transmission with X; 

- γ : rate at which HIV-infected population develops AIDS; 

- κ: rate at which undiagnosed HIV-infected population is diagnosed through contact tracing; 

- κ ′ : rate at which undiagnosed HIV-infected population is diagnosed through random testing; 

- μ: mortality rate of the adult population; 

- μ′ : mortality rate of the population with AIDS; 

- u 1 : the proportion of susceptible individuals that use condom; 

- u 2 : the proportion of diagnosed HIV-infected population that are under ART treatment; 

- ε 1 : efficacy of u 1 ; 

- ε 2 : efficacy of u 2 . 

The stability of the equilibria of the model are discussed using the stability theorem and using the fractional La-Salle

invariance principle for fractional differential equations (FDEs). In this model, the susceptible population are transmitted to 

the undiagnosed HIV infected population by a mass action term. The undiagnosed HIV-infected population are infected by 

sexual transmission and move to the diagnosed class in two ways: one is through a mass action term that represents contact

tracing, and the other is through a linear term that represents random or voluntary testing. In addition, it is assumed that

the diagnosed HIV-infected population and the AIDS people can not transmit the infection due to the Cuban health care 

system [99] . It is worth noting that 99% of the infection is done in Cuba via sexual contact [100] , so infection by nonsexual

transmission is neglected. 

Kheiri and Jafarin [98] presented a general formulation for a FOCP, in which the state and co-state equations are given in

terms of the left fractional derivatives. This approach simplifies the use of fractional numerical methods to solve the state 

and co-state equations. For numerical simulation of the FOCP, they developed the Forward-Backward sweep method (FBSM) 

using the Adams-type predictor-corrector method. They considered the control parameters of the model as time dependent 

controls and formulate an optimal control problem. Conditions for fractional optimal control of the disease are derived and 

analyzed. The state and co-state equations were characterized by left fractional derivatives and the numerical method is 

used to numerically compute the solutions of the optimality system. Also, the efficacy of the fractional derivative order α
( 0 . 6 ≤ α ≤ 1 ) on the HIV/AIDS epidemic model and the controls was investigated. 

3.8. Mathematical modeling of smoking epidemics (POSQL MODEL) 

Smoking is the major problem in the entire world effecting healthy community. Smoking effects different or gans of hu- 

man body caused more than one million deaths in the world. A chance of heart attack in smoker is 70% more as compared

to nonsmoker. Similarly, the incident rate of lung cancer of smoker is 10% more than nonsmoker. The main effects of short

term smoking are coughing, stained teeth, high blood pressure and bad breath. The major effects of long term smoking 

are gum disease, stomach ulcer, lung cancer, heart disease, throat cancer and mouth cancer in the recent years. The life of
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smoker is also 12–13 years shorter than non-smoker. According to the reports of world health organization (WHO) smoking 

kills many individual in the entire world. Every scientist, doctor and mathematician tries to control the effect of smoking. 

The lot of smoking models are presented by the researchers. Erturk et al. examined the smoking model related with Caputo

fractional derivative [101] . Zaman studied the optimal control of the smoking models and present the qualitative analysis of 

dynamics of smoking [102,103] . Analysis of cigarette smoking and lung cancer is presented in [104] . Garsow et al. [105] de-

scribed the mathematical analysis of tobacco use their decline. Some more interesting studies about dynamics of smoking 

is discussed in [106–109] . 

The concept of mathematical modeling has been prolonged to define the stability and qualitative features of giving up 

smoking models from 20 0 0. Smoking model is divided into five subdepartment like potential smoker P (t) , the occasional

smoker O (t) , smoker S(t) , temporarily quit smoker Q(t) and permanently quit smoker L (t) . The proposed smoking model

in the form of system of nonlinear differential equation is given by [110] : 

dP 

dt 
= � − βP S − μP, 

dO 

dt 
= βP S − α1 O − μO, 

dS 

dt 
= α1 O + α2 SQ − (μ + γ ) S, (33) 

dQ 

dt 
= −α2 SQ − μQ + γ (1 − δ) S, 

dL 

dt 
= δγ S − μL. 

In this model, � is represent the recruitment rate in P, β is the effective contact rate between S and P, μ is the natural death

rate, α1 is the rate at which occasional smokers become regular smokers, α2 and γ represents the contact rate between 

smokers and temporary quitters who revert back to smoking and the rate of quitting smoking respectively, (1 − δ) is the

fraction of smokers who temporary quit smoking (at the rate γ ), δ is the remaining fraction of smoking which represents

permanently quit smoking. 

The fractional smoking model in the sense of Caputo fractional derivatives could be described as follows [110] : 

C 
0 D 

φ1 

t P (t) = � − βP S − μP, 

C 
0 D 

φ2 

t O (t) = βP S − α1 O − μO, 

C 
0 D 

φ3 

t S(t) = α1 O + α2 SQ − (μ + γ ) S, (34) 

C 
0 D 

φ4 

t Q(t) = −α2 SQ − μQ + γ (1 − δ) S, 

C 
0 D 

φ5 

t L (t) = δγ S − μL. 

In this study smoking epidemic model has been investigated as follows: 

(i) Laplace Adomian decomposition method for mathematical models based on system of fractional order differential 

equations is more powerful approach to compute the convergent solutions. 

(ii) The convergence analysis is also provided to demonstrate the efficiency of the method. 

(iii) The constructed series by Laplace Adomian decomposition method for smoking model show a good agreement to 

control the bad impact of smoking for different time period and to eradicate a death killer factor in the world. 

(iv) Introduced the stability analysis theory and sensitivity analysis of mathematical epidemic models in the nonlinear 

system which represent both the local and global behavior of smoking dynamics. 

(v) Estimated the parameter that characterize the behavior of disease and present numerical simulations. 

The pivotal aim of the resent work is to obtain an approximated analytical solution for the fractional smoking epidemic 

model with the aid of a novel technique called q-homotopy analysis transform method (q-HATM) [111] . The considered 

nonlinear mathematical model has been effectively employed to elucidate the evolution of smoking in a population and its 

impact on public health in a community. The researchers found some new approximate solutions in a series form, which 

converges rapidly, and the proposed algorithm provides auxiliary parameters, which are very reliable and feasible in con- 

trolling the convergence of obtained approximate solutions. Further, they presented novel simulations for all cases of results 

to validate the applicability and effectiveness of proposed scheme. The outcomes of the study reveal that the q-HATM is 

computationally very effective to analyse nonlinear fractional differential equations arises in daily life problems. 

3.9. Mathematical modeling of shigellosis and norovirus outbreak (SEIAR MODEL) 

Shigellosis (bacillary dysentery), the result of infection with Shigella, is an enteric infectious disease responsible for ap- 

proximately 1,10 0,0 0 0 deaths per year worldwide [112] . As approximately two-thirds of those who die from shigellosis are

children under 5 years of age, it is one of the most common diarrhea-related causes of morbidity and mortality in children in
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developing countries [113] . Shigellosis epidemics usually occur in areas with crowding and poor sanitary conditions, where 

person-to-person transmission or contamination of food or water by the organism is common [114–119] . In China, many 

private wells supplying water to schools are built in close proximity to sources of pollution, including toilets, septic tanks, 

sewer ditches, and lakes and ponds into which sewage is discharged. As water from these wells is often not treated before

being piped into schools, waterborne outbreaks of Shigella frequently occur [117] , with devastating effects on students, their 

families, and schools. 

Many outbreak control strategies developed by primary-level health departments in China are empirically-driven. This 

can be attributed to a lack of data regarding the rate of morbidity in the absence of intervention, making it difficult to

estimate whether the efficacy of a single or combined intervention could be decreased if implemented using traditional 

methods. In these circumstances, researchers often perform mathematical modeling to estimate the total attack rate (TAR), 

an indicator of the extent of an outbreak [120–124] . A bacillary dysentery model with seasonal fluctuation was formulated 

and studied by Bai et al. [125] . 

Fortunately, a waterborne pathogen model termed the Susceptible-Infectious-Recovered-Water (SIRW) model can be used 

to examine disease outbreaks that occur via multiple transmission pathways [126] , such as shigellosis. The SIRW model is a

simple ordinary differential equation model that extends the classic SIR framework by adding a compartment ( W ) that tracks

the pathogen concentration in water. Infected individuals shed the pathogen into water compartments, and new infections 

arise both through exposure to contaminated water as well as by the classic SIR person-person transmission pathway. The 

researchers developed a SEIARW model to examine the efficacy of different intervention strategies in controlling an outbreak 

of shigellosis at a primary school in Changsha City, China. 

In [127] , the authors gave the development of the SEIARW model, where individuals were characterized according to their 

epidemiological status as susceptible ( S), exposed ( E, infected but not yet fully contagious), infectious ( I), asymptomatic 

( A ), and recovered ( R ); W denotes the reservoir (water) compartment. The susceptible individuals become infected (i.e.,

move from S to E) by contact with either infected/asymptomatic individuals or contaminated water at rates of βSI, βkSA 

and βW 

SW respectively, where β and βW 

are the probability of transmission per contact, k is the relative transmissibility 

of asymptomatic to symptomatic individuals. As exposed individuals become infectious after an incubation period, they 

move from E to I at a rate of (1 − p) ωE and E to A at a rate of pωE , where 1 /ω is the incubation period of the disease

and p is the proportion of asymptomatic individuals. After the infectious period has passed, infectious and asymptomatic 

individuals may move to R at a rate of γ I and γ ′ A respectively, where 1 /γ and 1 /γ ′ are the infectious period of the I and A .

Infectious and asymptomatic individuals can in turn contaminate the water compartment by shedding the pathogen into W 

at a shedding rate of μI and μ′ A, where μ and μ′ are the shedding coefficients. The pathogen in W will subsequently leave

the water compartment at a rate of εW, where 1 /ε is the lifetime of the pathogen. The corresponding model equations are

as follows: 

dS 

dt 
= −βS(I + kA ) − βW 

SW, 

dE 

dt 
= βS(I + kA ) + βW 

SW − ωE, 

dI 

dt 
= (1 − p) ωE − γ I, (35) 

dA 

dt 
= pω E − γ ′ A , 

dR 

dt 
= γ I + γ ′ A, 

dW 

dt 
= μI + μ′ A − εW. 

A disease with similar epidemic models above called Norovirus which is one of the most important pathogens of infec- 

tious diarrhea and outbreaks of all ages [128–130] . In the United States, Norovirus causes approximately 21 million cases 

each year [129] , 71,0 0 0 hospitalizations [131] , and 80 0 deaths [129,132] . In developing countries, there are frequent out-

breaks of medical institutions and schools [133] , which have a great impact on the health of residents. The disease is mainly

transmitted through the fecal-oral route, and the infection dose is very low. Ingestion of 18 viruses at a time can cause

infection [134] . Therefore, it is easy to cause transmission, usually by human contact, and water or Food spread. School

outbreaks can also lead to absenteeism or even suspension of classes, affecting normal teaching order and increasing the 

burden of family care for children. Therefore, in-depth study of the dynamic characteristics of Norovirus infectious diarrhea 

outbreaks, and the evaluation of the effects of various types of prevention and control measures have important public 

health significance. 

Based on the natural history of Norovirus-infected diarrhea, the researchers established the integer order SEIAR model of 

Norovirus transmission in schools. Taking an outbreak event in a city in 2007 as an example, the dynamic characteristics of

Norovirus were studied and the key prevention and control was quantitatively evaluated. But the results which demonstrated 

the effect of match could be improved further to reflect the spread of Norovirus, especially the transmission speed before 

the intervention. 
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The SEIAR model is the most common method for studying the dynamic characteristics of some infectious disease, such 

as Norovirus, influenza, worm propagation The classical model of the SEIAR model considers that the total human population 

N is divided into five subpopulations: S(t) susceptible humans, E(t) exposed humans (infected but not yet fully contagious), 

I(t) infected humans, A (t) asymptomatic humans, R (t) recovered (or removed) humans. Hence, the classical model consists 

of five ordinary differential equations for the five independent functions of the form [135] : 

dS 

dt 
= −βS(I + κA ) , 

dE 

dt 
= βS(I + κA ) − μω 

′ E − (1 − μ) ωE, 

dI 

dt 
= (1 − μ) ωE − γ I, (36) 

dA 

dt 
= μω 

′ E − γ ′ A, 

dR 

dt 
= γ I + γ ′ A. 

Based on the integer order SEIAR model, we propose the following fractional SEIAR model using the Caputo fractional 

derivative with order αi ( i = 1 , 2 , · · · , 5 ): 

λα1 

C 
0 D 

α1 

t S = −βS(I + κA ) , 

λα2 

C 
0 D 

α2 

t E = βS(I + κA ) − μω 

′ E − (1 − μ) ωE, 

λα3 

C 
0 D 

α3 

t I = (1 − μ) ωE − γ I, (37) 

λα4 

C 
0 D 

α4 

t A = μω 

′ E − γ ′ A, 

λα5 

C 
0 D 

α5 

t R = γ I + γ ′ A, 

where some new parameters λαi 
(i = 1 , 2 , · · · , 5) are introduced, which have dimension of (days ) αi −1 on the left sides of

the equations to preserve units. This ensures that both sides of the equations have the same dimension (days ) −1 . 

In this paper, we will use the single-term and multi-term fractional order SEIAR model to describe the outbreak of 

norovirus with the fractional derivatives in the sense of Caputo in sections 6 and 7. These fractional SEIAR models have

different values of fractional order. In order to obtain the numerical solution of the fractional equations, the GMMP scheme 

is used as an implicit difference scheme. The Newton method is used to solve this implicit difference scheme which can be

considered as a nonlinear equations. Furthermore, the corresponding inverse problem of parameter estimation is investigated 

by the modified hybrid Nelder-Mead simplex search and particle swarm optimization algorithm [136] . Using the statistics 

from the norovirus outbreak in a middle school in China in 2007 [135] , the parameters of the single-term and multi-term

fractional order SEIAR model can be determined, respectively, and both the numerical results of two fractional order SEIAR 

models are in good agreement with the real data details in sections 6 and 7. 

4. Numerical methods for the fractional order differential equation 

There are various numerical methods which have been applied to solve the fractional order equations, including the 

Power Series Method [27] , the Predictor Corrector Method [27,29] , the Mellin Transform Method [137] , and others. In this

paper, we applied the GMMP scheme (Gorenflo-Mainardi-Moretti-Paradisi) [81] and Newton method to solve the equations 

mentioned above, which is much more efficient than other numerical methods. For the sake of simplicity, we consider the 

equations as form: 

λ �
C 
a D 

α
t x (t) = f (t , x (t )) (38) 

where x (t) = (S(t ) , E(t ) , I(t ) , A (t ) , R (t )) T , λ = (λα1 
, λα2 

, λα3 
, λα4 

, λα5 
) T and 

C 
a D 

α
t denotes the Caputo fractional derivative. In

order to obtain the numerical solution of the fractional differential equations, we discrete in time using the uniform grids 

with 0 < α < 1 , that is t j = a + jh, j = 0 , 1 , 2 , · · · , N, Nh = t − a . As we know, the Riemann-Liouville and Gr ̈u nwald-Letnikov

fractional derivatives can be approximated using the following formula, 

RL 
a D 

α
t x (t) = 

GL 
a D 

α
t x (t) = lim 

h → 0 

1 

h 

α

N ∑ 

k =0 

c αk x (t N−k ) ≈
1 

h 

α

N ∑ 

k =0 

c αk x (t N−k ) , (39) 

and the Caputo fractional derivatives can be approximated by the following relation 

C 
a D 

α
t x (t) ≈ 1 

h 

α

N ∑ 

k =0 

c αk 

[ 

x (t N−k ) −
n −1 ∑ 

j=0 

(t − a ) j x ( j) (a ) 

j! 

] 

, (40) 

where c α
k 

= (−1) k 
(
α
j 

)
are binomial coefficients. 
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This method was first introduced by Gorenflo in [81] and is known as the GMMP scheme in [138] . Based on the GMMP

scheme, we can present the numerical techniques for simulating fractional order differential equations. In order to explain 

this method, the fractional order nonlinear Eq. (37) can be written as: 

λ �
C 
a D 

α
t x (t) = f (t, x (t)) , 0 ≤ t ≤ T , 

x (k ) (a ) = x (k ) 
0 

, k = 0 , 1 , · · · , n − 1 . (41) 

It follows from formula (40) that 

λ �

N ∑ 

k =0 

c αk 

[ 

x (t N−k ) −
n −1 ∑ 

j=0 

(t − a ) j x ( j) (a ) 

j! 

] 

= h 

α f (t N , x (t N )) , (42) 

i.e, 

x (t N ) = h 

α
� λ � f (t N , x (t N )) + 

n −1 ∑ 

j=0 

(t − a ) j x ( j) (a ) 

j! 
−

N ∑ 

k =1 

c αk 

[ 

x (t N−k ) −
n −1 ∑ 

j=0 

(t − a ) j x ( j) (a ) 

j! 

] 

. (43) 

In particular, if 0 < α ≤ 1 , the above formula (43) can be written as follows: 

x (t N ) = h 

α
� λ � f (t N , x (t N )) + x (a ) −

N ∑ 

k =1 

c αk [ x (t N−k ) − x (a ) ] . (44) 

Based on the Gr ̈u nwald-Letnikov formula, we can present an implicit difference scheme (44) which can be considered as

an equation with respect to an unknown variable x (t N ) . Then, we can use the Newton method to solve the value of x (t N )

by the Eq. (44) . 

The Newton method is an effective method of solving nonlinear equations. For the nonlinear equations F (x ) = 0 , the

Newton method is expressed as: 

x n +1 = x n − J F (x n ) 
−1 F (x n ) , n = 0 , 1 , 2 , · · · , (45) 

where J F (x n ) is the Jacobian matrix at x n . The LU factorization of J F (x n ) can be used to solve the above equations for def-

initeness in the description of Newton algorithm, and any other appropriate factorization such as QR or Cholesky can be 

used as well. The inputs of the algorithm are the initial iterate x 0 , the nonlinear map F, and a termination tolerances ε. The

details of the Newton algorithm are: 

Step i: Compute and factor the Jacobian matrix J F (x 0 ) = LU, 

Step ii: Solve the linear equation LUs = −F (x 0 ) , x = s + x 0 , 

Step iii: While the x satisfies the condition ‖ x − x 0 ‖ > ε, then 

(iii.a) Let x 0 = x, then factor the Jacobian matrix J F (x 0 ) = LU, 

(iii.b) Solve the linear equation LUs = −F (x 0 ) , x = s + x 0 , 

(iii.c) Compute and evaluate ‖ x − x 0 ‖ . If ‖ x − x 0 ‖ > ε, goto step (iii.a). 

Then we can get the output x = x (t N ) , i.e., the solution of the Eq. (44) . In this paper, we use the GMMP scheme and

Newton method to obtain the numerical solution of the fractional systems. 

5. The technique for parameter estimation in fractional order non-linear systems 

An exploration using a model reflecting the behaviour of a real system is known as the forward problem, whereas the

process of fitting model parameters to a measurement or measurements is known as the inverse problem. It is difficult 

to estimate parameters of fractional order nonlinear model. This problem will become more difficult when the range of 

the parameters is large and the function f is highly non-linear with respect to the unknown parameters in the fractional 

nonlinear model. To improve the fitting process and its robustness and avoid being trapped in a local minimum, strict 

procedures can be followed, which involve narrowing the search space. Therefore, the search for a global minimum has 

been formulated as a constrained optimisation problem. To analyse the reliability of our model in a quantitatively correct 

way, parameters need to be globally determined. 

In this section, a feasible and reliable parameter estimation technique is presented for the purpose of obtaining the global 

minimum to the optimisation problem. A technique is proposed for estimating parameters in a fractional order nonlinear 

model. The fractional order nonlinear system (41) can be written as a model with m unknown parameters: 

λ �
C 
a D 

α
t x (t) = f (t, x (t) , P ) , 0 ≤ t ≤ T , 

x (k ) (a ) = x (k ) 
0 

, k = 0 , 1 , · · · , n − 1 , (46) 

where x = (x 1 , x 2 , x 3 , x 4 , x 5 ) 
T are state variables and f = ( f 1 , f 2 , · · · , f n ) 

T are n -dimensional vector functions, and every

f i (i = 1 , 2 , · · · , n ) may be nonlinear with respect to the unknown parameters P = (p 1 , p 2 , · · · , p m 

) T , m is the number of

parameters. 
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In the following, we will introduce the method of parameter estimation with a modified hybrid Nelder-Mead simplex 

search and particle swarm optimization [136] . Both the hybrid Nelder-Mead simplex search (NMSS) ( [139] ) and the particle

swarm optimisation (PSO) ( [140] ) have been widely used in solving challenging optimisation problems which are widely 

used for identifying parameter. However, the literature shows that the practical use of NMSS and PSO are both limited, 

since NMSS is likely to be trapped in a local optima and PSO has a slow convergence rate. Interestingly, the combined use

of NMSS and PSO has been demonstrated to be outperform both NMSS and PSO in terms of solution quality and convergence

rate. 

In the NMSS-PSO parameter estimation process, the role assigned to NMSS and PSO is different due to their different

functionalities. The NMSS focuses on exploitation and PSO focuses on exploration. The combination of the two methods 

makes full use of the merits of each method. Specifically, NMSS is used to exploit the current solution space and PSO focuses

on the exploration of the unknown space. The obvious distinctions between NMSS and PSO mainly exist in their choice of

initial points and the manner with which they proceed towards the solution: NMSS uses predetermined initial points and 

moves towards points with better objective function values, while PSO uses a set of random initial points and through 

iterations moves away from points with worse objective function values. The PSO proceeds by moving towards those points 

which have better function values, while the NMSS evolves by moving away from a point which has the worst performance.

The modified hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) method has been used 

to estimate parameters for integer and fractional model, which takes the best advantages of both the NMSS method and the

PSO method. In the following, we will use the MH-NMSS-PSO method to conduct the parameter estimation for fractional 

order nonlinear models. Taking the better characteristics of each method, we propose the MH-NMSS-PSO method as follows. 

Suppose that P = (p 1 , p 2 , · · · , p m 

) T ∈ �, where � = [ p (min ) 
1 

, p (max ) 
1 

] × [ p (min ) 
2 

, p (max ) 
2 

] × · · · × [ p (min ) 
m 

, p (max ) 
m 

] is a bounded

domain. 

Let x (t j ) be one of numerical solutions of Eq. (46) with the given parameters P = (p 1 , p 2 , · · · , p m 

) ∈ � which is obtained

by the GMMP scheme and Newton method, the approximation of the unknown parameter vector P ∗ = (p ∗
1 
, p ∗

2 
, · · · , p ∗

2 
) is

determined by the root-mean-square error (rMSE) 

g(P ∗) = min 

P∈ �
g(P ) = min 

p∈ �

√ ∑ N 
j=0 

(
x (t j ) − x j 

)2 

N + 1 

, (47) 

where x j are real data. 

The MH-NMSS-PSO method tries to find a potential global minimum g(P ∗) in the equation with the parameters P ∈ �.

The MH-NMSS-PSO method takes the advantages of both the NMSS method and the PSO method to conduct the inverse 

problem. It starts with (3 m + 1) initial particles, which is constructed in two parts. Firstly, the predetermined points is em-

ployed to form an initial simplex of (m + 1) particles which is used in the NMSS method, and the 2 m paticles are randomly

generated in the PSO method. Then, we sotred the total (3 m + 1) particles from smallest to largest by the function values

g(P ) in Eq. (47) . In the following, the best (m + 1) particles are handled by the NMDD method, while the last 2 m particles

are adjusted by the PSO method. Then the algorithm for the MH-NMSS-PSO method is summarised as follows: 

Step 1: Initialization. Generate a population of size 3 m + 1 . 

For the minimization of the functions g(P ) of m variables (unknown parameters), create (m + 1) vertex points P i =
(p 1 ,i , p 2 ,i , · · · , p m,i ) ∈ �, (i = 1 , 2 , · · · , m + 1) to form an initial m -dimensional simplex. Evaluate the function value at each

extreme point (or vertex) of the simplex, i.e. m + 1 particles are constructed via the standard starting point used in

the NMSS, and a step size of (p (max ) 
j 

− p (min ) 
j 

) / (m + 1) at each coordinate direction to form an initial simplex for the

NMSS part, i.e. p j,i = p (min ) 
j 

+ (i − 1) × (p (max ) 
j 

− p (min ) 
j 

) / (m + 1) , ( j = 1 , 2 , · · · , m ; i = 1 , · · · , m + 1) . 2 m particles are ran-

domly generated in each dimension for the PSO part, P i = (p 1 ,i , p 2 ,i , · · · , p m,i ) ∈ �, (i = m + 2 , · · · , 3 m + 1) , where p j,i =
p (min ) 

j 
+ Rand × (p (max ) 

j 
− p (min ) 

j 
)( j = 1 , 2 , · · · , m ; i = m + 2 , · · · , 3 m + 1) and Rand is a random number in the range (0,1).

Moreover, the particle’s initial velocities in each dimension are selected by the following: 

V j,i = (V 

(max ) 
j 

− V 

(min ) 
i 

) /L j ( j = 1 , 2 , · · · , m ; i = m + 2 , · · · , 3 m + 1) , (48)

where L j ( j = 1 , 2 , · · · , m ) are selected integers. 

Step 2: Evaluation and ranking: evaluate the objective function value g(P ) of each particle. Rank them based on the

objective function value; 

g(p 1 ) ≤ g(p 2 ) ≤ · · · ≤ g(p 3 m +1 ) . (49) 

Step 3: NMSS method: apply the NMSS method to the best m + 1 particles and replace the (m + 1) th particle with the

update as follows: 

(3.1) Calculate P 0 , the center of gravity of all points except P m +1 , i.e. P 0 = (p 1 , 0 , p 2 , 0 , · · · , p m, 0 ) ∈ �, where p j, 0 =∑ m 
i =1 p j,i 

m 

( j = 1 , 2 , · · · , m ) . 

(3.2) Reflection: In each iteration, determine P m +1 , P m 

and P 1 vertices, indicating the highest, the second highest and the

lowest function values that occur, respectively. Let g(P m +1 ) , g(P m 

) and g(P 1 ) represent the corresponding observed function

values. Compute the reflected point 

P r = (1 + κ) P 0 − κP m +1 , (50) 
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where κ is the reflection coefficient (κ > 0) using the suggested value κ = 1 [139] . P r = (p 1 ,r , p 2 ,r , · · · , p m,r ) ∈ �, p j,r =
(1 + κ) p j, 0 − κ p j,m +1 ( j = 1 , 2 , · · · , m ) . If g(P 1 ) ≤ g(P r ) ≤ g(P m 

) , then P r replaces P m +1 , else go to step (3.3). 

(3.3) Expansion: If g(P r ) ≤ g(P 1 ) , then compute the expanded point 

P e = γ P r + (1 − γ ) P 0 , (51) 

where γ is the expansion coefficient using the suggested value γ = 2 [139] . P e = (p 1 ,e , p 2 ,e , · · · , p m,e ) , p j,e = γ p j,r + (1 −
γ ) p j, 0 ( j = 1 , 2 , . . . , m ) . If g(P e ) ≤ g(P 1 ) , then P e replaces P m +1 , otherwise P r replaces P m +1 . Else continue at step (3.4). 

(3.4) Contraction: if g(P r ) > g(P m 

) , then if g(P r ) ≤ g(P m +1 ) , then P r replaces P m +1 , compute the contracted point 

P c = βP m +1 + (1 − β) P 0 . (52) 

where β(0 < β < 1) is the expansion coefficient using the suggested value β = 0 . 5 [139] . P c = (p 1 ,c , p 2 ,c , · · · , p m,c ) , p j,c =
βp j, m +1 + (1 − β) p j,c ( j = 1 , 2 , · · · , m ) . If g(P c ) ≤ g(P m +1 ) , then P c replaces P m +1 . Else go to step (3.5). 

(3.5) Shrink: For all but the best point, replace the point with 

P i = σP i + (1 − σ ) P 1 , (53) 

where σ is the shrinkage coefficient with the suggested value σ = 0 . 5 and P i denotes the vertex point for i = 2 , 3 , · · · , m + 1 .

Step 4: Particle swarm optimization: apply the PSO operator for updating the last 2 m particles with the worst objective

function value as follows: 

(4.1) Velocity and position update. Assign the best positions P b i = P i (i = m + 2 , · · · , 3 m ) (initialize randomly all particles

positions in step 1 and the global best location P g = P m +2 . The particles velocity and position are updated by the following

equations: 

V 

new 

j,i = ω × V 

old 
j,i + C 1 × Rand 1 × (P b j,i − P old 

j,i ) + C 2 × Rand 2 × (P g j − P old 
j,i ) , 

P new 

j,i = P old 
j,i + V 

new 

j,i , j = 1 , 2 , · · · , m ; i = m + 2 , · · · , 3 m + 1 , 

where C 1 and C 2 are two pre-determined positive constants, ω is an inertia weight and Rand 1 and Rand 2 are random num- 

bers in the range (0 , 1) . Considering the ranges of the search space in different dimensions, we use C 1 = 0 . 8 , C 2 = 0 . 3 and

ω = [0 . 5 + (Rand/ 2 . 0)] in our case. 

(4.2) Imposed boundaries. The absorbing walls are imposed to drive particles to the pre-determined parameter domains 

[141] . Thus, it avoids physically impossible solutions by assuming the velocity in a certain dimension is zero when a particle

hits the boundary placed on that parameter. 

(4.3) PSO iteration. Return to step 4 and start a new PSO iteration until it reaches the largest PSO iteration time S iter . 

Step 5: Evaluate and rank again for all 3 m + 1 particles. Discriminate the stopping criterion: if S c < ε , where ε is a small

error parameter, the loop will stop. The criterion is defined by 

S c = 

√ 

m +1 ∑ 

i =1 

( ̄g − √ 

g i ) 2 

m + 1 

(54) 

where ḡ = 

∑ m +1 
i =1 

g ∗
i 

m +1 and g ∗
i 

= 

√ 

g i = 

√ 

g i (p 1 , p 2 , · · · , p m 

) . The algorithm will stop when either (54) is satisfied or the num-

ber of iterations reaches the maximum iteration count. 

Step 6: Output the best estimated parameter values P = (p 1 , p 2 , · · · , p m 

) . 

This parameter estimation technique can be implemented in a straightforward manner for the purpose of solving in- 

verse problems governed by fractional linear or nonlinear dynamics, since it does not require gradient computation and is 

therefore derivative free. The NMSS-PSO algorithm has been outlined in detail in [136] . 

6. Application to parameter estimation in the fractional SEIAR model 

In this section, the MH-NMSS-PSO scheme is employed to estimate the fractional orders and parameters for the 

fractional-order Norovirus infection system in Section 3.9 . The results can verify the efficiency of both the GMMP scheme

presented in Section 4 and the MH-NMSS-PSO presented in Section 5 for the inverse problem. 

In the reference [135] , they used the data about a Norovirus infectious diarrhea incident reported in a school in China.

The information includes the number of people affected, the onset time of all cases, the intervening time of the department

of the centers for disease control and prevention, the preventive and control measures, etc. The details of the outbreak are

as follows: the department of the centers for disease control and prevention of a city received a telephone report from

a middle school on March 8, saying that there were more than ten cases of vomiting, abdominal pain and diarrhea in

the school recently. The following case definitions were established: vomiting or diarrhea and other symptoms such as 

abdominal pain, fever, headache and dizziness have occurred among the students and staff of the school since March 5. 

There are 93 classes in 5 grades in the school, with 5225 students and 430 teachers. The number of cases reached a peak

on 8 March. After the intervention on 8 March, isolation measures were taken. The epidemic situation began to decline 

gradually. The authors used the integer order SEIAR model to predict the number of the infected people with the selected

values of the parameters: β = 8 . 3452 × 10 −4 , κ = 3 . 9065 × 10 −11 , ω = 1 , ω 

′ = 1 , μ = 0 . 3 , γ = 0 . 3333 and γ ′ = 0 . 03846 ,
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Fig. 1. Number of infected humans I(t) in a middle school in the 2007: Comparison of numerical results of one-term fractional SEIAR model with the real 

data with the estimated parameters obtained by MH-NMSS-PSO method. The root-mean-square error is rMSE = 4 . 0792 . 

 

 

 

 

 

 

 

 

 

and the root-mean square error between the numerical solutions of integer order SEIAR model with the real data is rMSE

= 7 . 9138 [135] . 

In this paper, we use the modified hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) 

algorithm to estimate the parameters of fractional SEIAR model (37) to the real data. The real data of a 2007 Norovirus out-

break in a middle school is used as the known data to perform the inverse problem of parameter estimation. The parameters

λαi 
(i = 1 , 2 , · · · , 5) are used to ensure that both sides of the equation have the same dimension, and these constants can be

divided throughout and combined with the parameters on the right-hand side. There are five fractional order parameters and 

totally seventeen parameters that should be estimated. In this inverse procedure, the unknown parameters vector is taken 

as P = (λ1 , · · · , λ5 , α1 , · · · , α5 , β, μ, κ, ω , ω 

′ , γ , γ ′ ) . Each of the parameters in the fractional order SEIAR model (37) has its

particular biological meaning and each parameter has a corresponding value range. Therefore, based on these ranges, we 

select some appropriate intervals and initial velocities as follows: 

0 ≤ λi = p i ≤ 2 , i = 1 , 2 , · · · , 5 , 0 ≤ α j = p j+5 ≤ 1 , j = 1 , 2 , · · · , 5 

1 × 10 

−4 ≤ β = p 11 ≤ 1 × 10 

−3 , 1 × 10 

−11 ≤ κ = p 12 ≤ 1 × 10 

−10 

0 . 01 ≤ μ = p 13 ≤ 0 . 3 , 1 ≤ ω = p 14 ≤ 2 

1 ≤ ω 

′ = p 15 ≤ 2 , 0 . 3 ≤ γ = p 16 ≤ 1 

0 . 05 ≤ γ ′ = p 17 ≤ 0 . 09 

and 

V i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 . 02 , i = 1 , 2 , · · · , 5 ;
0 . 01 , i = 6 , 7 , · · · , 10 ;
1 × 10 

−4 , i = 11 ;
1 × 10 

−11 , i = 12 ;
0 . 01 , i = 13 ;
0 . 025 , i = 14 , 15 ;
0 . 01 , i = 16 , 17 . 

Using the same initial values and the time as t = 20 days, we apply the MH-NMSS-PSO to estimate model parameters

from the real data based on the numerical solution solved by the GMMP scheme. Fig. 1 shows the comparison of numerical

results of fractional SEIAR model with the real data and the calculated model parameters P ∗ are: 

λ1 = 0 . 6182 , λ2 = 0 . 8757 , λ3 = 0 . 1106 , λ4 = 0 . 9341 , λ5 = 0 . 4627 , 

α1 = 0 . 9049 , α2 = 0 . 6940 , α3 = 0 . 7945 , α4 = 0 . 6637 , α5 = 0 . 8279 , 

β = 1 × 10 

−3 , κ = 5 . 6636 × 10 

−11 , μ = 0 . 0382 , ω = 1 . 0038 , ω 

′ = 1 . 0 0 0 0 , 

γ = 0 . 3458 , γ ′ = 0 . 0737 . 

As can be seen from Fig. 1 that, the root-mean square error between the numerical solutions of fractional SEIAR model and

the real data is rMSE = 4 . 0792 , which suggests that both the GMMP scheme and the MH-NMSS-PSO method are valid in
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dealing with inverse problems for the fractional SEIAR system, and the fractional SEIAR model provides better fit to the real

data than the interger order SEIAR model. 

7. Application to parameter estimation in the multi-term fractional SEIAR model 

7.1. Multi-term fractional order SEIAR model of norovirus outbreak 

As we known, the multi-term fractional order differential equation have played an important role in capturing the be- 

haviour of real materials, especially in the field of the viscoelastic mechanics. In the recent years, some studies has shown

that the multi-term fractional differential equation can also provide a better epidemic model than integer order derivative 

[10] . For searching a better norovirus epidemic system which is capable of providing numerical results that agree much 

better with the real data, we propose the following multi-term fractional order SEIAR model: 

C 
0 D 

ξ1 , ··· ,ξr ,ξ0 

t S(t) = −βS(I + κA ) , 

C 
0 D 

θ1 , ··· ,θr ,θ0 

t E(t) = βS(I + κA ) − μω 

′ E − (1 − μ) ωE, 

C 
0 D 

φ1 , ··· ,φr ,φ0 

t I(t) = (1 − μ) ωE − γ I, (55) 

C 
0 D 

ϕ 1 , ··· ,ϕ r ,ϕ 0 
t A (t) = μω 

′ E − γ ′ A, 

C 
0 D 

ψ 1 , ··· ,ψ r ,ψ 0 

t R (t) = γ I + γ ′ A. 

In this model, 

C 
0 D 

ξ1 , ··· ,ξr ,ξ0 

t x (t) = 

r ∑ 

i =1 

λξi 
· C 

0 D 

ξi 

t x (t) + λξ0 
· C 

0 D 

ξ0 

t x (t) , 

C 
0 D 

θ1 , ··· ,θr ,θ0 

t x (t) = 

r ∑ 

i =1 

λθi 
· C 

0 D 

θi 

t x (t) + λθ0 
· C 

0 D 

θ0 

t x (t) , 

C 
0 D 

φ1 , ··· ,φr ,φ0 

t x (t) = 

r ∑ 

i =1 

λφi 
· C 

0 D 

φi 

t x (t) + λφ0 
· C 

0 D 

φ0 

t x (t) , 

C 
0 D 

ϕ 1 , ··· ,ϕ r ,ϕ 0 
t x (t) = 

r ∑ 

i =1 

λϕ i · C 
0 D 

ϕ i 
t x (t) + λϕ 0 · C 

0 D 

ϕ 0 
t x (t) , 

C 
0 D 

ψ 1 , ··· ,ψ r ,ψ 0 

t x (t) = 

r ∑ 

i =1 

λψ i 
· C 

0 D 

ψ i 

t x (t) + λψ 0 
· C 

0 D 

ψ 0 

t x (t) , 

where 0 < ξ1 < · · · < ξr < ξ0 = 1 , 0 < θ1 < · · · < θr < θ0 = 1 , 0 < φ1 < · · · < φr < φ0 = 1 , 0 < ϕ 1 < · · · < ϕ r < ϕ 0 = 1 , 0 < ψ 1 <

· · · < ψ r < ψ 0 = 1 , and the weighted coefficients λξi 
, λθi 

, λφi 
, λϕ i and λψ i 

∈ R + are used to preserve units. 

We use the GMMP scheme to discretize this multi-term fractional order nonlinear equation. For the sake of simplicity, 

we discretize in time using a uniform grid t j = jh, j = 0 , 1 , 2 , · · · , n and nh = t . The multi-term fractional order nonlinear

equation can be generally written as: 

C 
0 D 

α1 , ··· ,αr ,α0 

t x (t) = f [ t n , x (t n ) ] , 0 ≤ t ≤ T , (56) 

where x = (S(t) , E(t) , I(t) , A (t) , R (t)) T and 0 < α1 < · · · < αr < α0 = 1 . 

Firstly, the Caputo fractional derivative can be discretized as follows: 

C 
0 D 

αi 

t x (t n ) = 

1 

h 

αi 

n ∑ 

k =0 

c αi 

k 
[ x (t n −k ) − x (0) ] , i = 1 , 2 , · · · , r, (57) 

where c 
αi 

k 
= (−1) k 

(αi 
j 

)
are binomial coefficients. Hence, we have 

C 
0 D 

α1 , ··· ,αr ,α0 

t x (t n ) = 

r ∑ 

i =1 

λi 

h 

αi 

n ∑ 

k =0 

c αi 

k 
[ x (t n −k ) − x (0) ] + 

λ0 

h 

[ x (t n ) − x (t n −1 ) ] 

= 

n ∑ 

k =0 

r ∑ 

i =1 

λi 

h 

αi 
c αi 

k 
[ x (t n −k ) − x (0) ] + 

λ0 

h 

[ x (t n ) − x (t n −1 ) ] 

= 

n ∑ 

k =0 

[ 

r ∑ 

i =1 

λi 

h 

αi 
c αi 

k 

] 

[ x (t n −k ) − x (0) ] + 

λ0 

h 

[ x (t n ) − x (t n −1 ) ] 

= 

n ∑ 

k =0 

B 

n 
k [ x (t n −k ) − x (0) ] + 

λ0 

h 

[ x (t n ) − x (t n −1 ) ] , (58) 
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where B n 
k 

= 

∑ r 
i =1 

λi 

h αi 
c 
αi 

k 
. 

The discrete scheme of the multi-term fractional order equations (55) is given by 

C 
0 D 

α1 , ··· ,αr ,α0 

t x (t n ) = f [ t n , x (t n ) ] , 0 ≤ t ≤ T , (59) 

From the equations (58) and (59) , we have 

n ∑ 

k =0 

B 

n 
k [ x (t n −k ) − x (0) ] + 

λ0 

h 

[ x (t n ) − x (t n −1 ) ] = f [ t n , x (t n ) ] , (60) 

i.e, 

x (t n ) = 

f (t n , x (t n )) 

B 

n 
0 

+ h 

−1 
+ 

B 

n 
0 x (0) + λ0 h 

−1 x (t n −1 ) 

B 

n 
0 

+ λ0 h 

−1 
−

∑ n 
k =1 B 

n 
k [ x ( t n −k ) − x (0) ] 

B 

n 
0 

+ λ0 h 

−1 
. (61) 

This implicit difference scheme can also be considered as an equation with respect to an unknown variable x (t n ) . The

Newton method can be used to solve for the value of x (t n ) of equation (61) . 

7.2. Application to parameter estimation in the multi-term fractional order SEIAR model of norovirus outbreak 

In this section, we consider the following three-term fractional order SEIAR model of the Norovirus outbreak: 

C 
0 D 

ξ1 ,ξ2 ,ξ0 

t S(t) = −βS(I + κA ) , 

C 
0 D 

θ1 ,θ2 ,θ0 

t E(t) = βS(I + κA ) − μω 

′ E − (1 − μ) ωE, 

C 
0 D 

φ1 ,φ2 ,φ0 

t I(t) = (1 − μ) ωE − γ I, (62) 

C 
0 D 

ϕ 1 ,ϕ 2 ,ϕ 0 
t A (t) = μω 

′ E − γ ′ A, 

C 
0 D 

ψ 1 ,ψ 2 ,ψ 0 

t R (t) = γ I + γ ′ A, 

where 

C 
0 D 

ξ1 ,ξ2 ,ξ0 

t = λ1 · C 
0 D 

ξ1 

t + λ2 · C 
0 D 

ξ2 

t + λ3 · C 
0 D 

ξ0 

t , 

C 
0 D 

θ1 ,θ2 ,θ0 

t = λ4 · C 
0 D 

θ1 

t + λ5 · C 
0 D 

θ2 

t + λ6 · C 
0 D 

θ0 

t , 

C 
0 D 

φ1 ,φ2 ,φ0 

t = λ7 · C 
0 D 

φ1 

t + λ8 · C 
0 D 

φ2 

t + λ9 · C 
0 D 

φ0 

t , 

C 
0 D 

ϕ 1 ,ϕ 2 ,ϕ 0 
t = λ10 · C 

0 D 

ϕ 1 
t + λ11 · C 

0 D 

ϕ 2 
t + λ12 · C 

0 D 

ϕ 0 
t , 

C 
0 D 

ψ 1 ,ψ 2 ,ψ 0 

t = λ13 · C 
0 D 

ψ 1 

t + λ14 · C 
0 D 

ψ 2 

t + λ15 · C 
0 D 

ψ 0 

t , 

and the other parameters in this model are defined as the same as those in (36) . In order to make the both sides of

the equations (62) have the same dimensions about the time t, the parameters λi (i = 1 , 2 , · · · , 15) are introduced on the

left sides of the equations. The parameters λi (i = 1 , 2 , 3) have dimension of (days ) ξi −1 (i = 1 , 2 , 0) , and λi (i = 4 , 5 , 6) have

dimension of (days ) θi −1 (i = 1 , 2 , 0) , respectively, The units of the other parameters λi (i = 7 , 8 , · · · , 15) can be obtained sim-

ilarly. The introduction of these parameters ensures that both sides of the equations have the same dimensions (days ) −1 . 

Next, we will use the GMMP scheme to obtain the numerical solution for this three-term fractional order SEIAR model 

(62) , and use the modified hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) algorithm 

to find a suitable set of fractional orders and parameters, with which the three-term fractional SEIAR model (62) can fit

the real data. As mentioned above for the one-term fractional order SEIAR model (37) , each of the parameters in the three-

term SEIAR model (62) has its particular biological meaning and each parameter has a corresponding value range. Therefore, 

based on these ranges, we select some appropriate intervals and initial velocities as follows: 

0 ≤ λi = p i ≤ 2 , i = 1 , 2 , · · · , 15 , 0 ≤ ξ j = p j+15 ≤ 1 , j = 1 , 2 

0 ≤ θk = p k +17 ≤ 1 , k = 1 , 2 , 0 ≤ φl = p l+19 ≤ 1 , l = 1 , 2 

0 ≤ ϕ m 

= p m +21 ≤ 1 , m = 1 , 2 , 0 ≤ ψ n = p n +23 ≤ 1 , n = 1 , 2 

1 × 10 

−4 ≤ β = p 26 ≤ 1 × 10 

−3 , 1 × 10 

−11 ≤ κ = p 27 ≤ 1 × 10 

−10 

0 . 01 ≤ μ = p 28 ≤ 0 . 3 , 1 ≤ ω = p 29 ≤ 2 , 1 ≤ ω 

′ = p 30 ≤ 2 

0 . 3 ≤ γ = p 31 ≤ 1 , 0 . 05 ≤ γ ′ = p 32 ≤ 0 . 09 

and 

V i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 . 02 , i = 1 , 2 , · · · , 15 ;
0 . 01 , i = 16 , 17 , · · · , 25 ;
1 × 10 

−4 , i = 26 ;
1 × 10 

−11 , i = 27 ;
0 . 01 , i = 28 ;
0 . 025 , i = 29 , 30 ;
0 . 01 , i = 31 , 32 . 
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Fig. 2. Number of infected humans I(t) in a middle school in the 2007: Comparison of numerical results of three-term fractional SEIAR model with the 

real data with the estimated parameters obtained by MH-NMSS-PSO method. The root-mean-square error is rMSE = 2 . 6041 . 

 

 

 

 

 

 

 

 

Again, using the same initial values and the time as t = 20 days, we apply the MH-NMSS-PSO to estimate model pa-

rameters from the real data based on the numerical solution solved by the GMMP scheme. Fig. 2 shows the comparison of

numerical results of three-term fractional SEIAR model with the real data and the calculated model parameters P ∗ are: 

λ1 = 0 . 0049 , λ2 = 1 . 7476 , λ3 = 0 . 0450 , α4 = 2 . 5174 × 10 

−4 , 

λ5 = 0 . 0017 , λ6 = 1 . 9998 , λ7 = 0 . 0038 , α8 = 7 . 8341 × 10 

−4 , 

λ9 = 0 . 0377 , λ10 = 0 . 4703 , λ11 = 1 . 9955 , λ12 = 0 . 2186 , 

λ13 = 0 . 0095 , λ14 = 0 . 1828 , λ15 = 0 . 8119 , ξ1 = 0 . 6236 , 

ξ2 = 0 . 8553 , θ1 = 0 . 6023 , θ2 = 0 . 60 0 0 , φ1 = 0 . 9577 , 

φ2 = 0 . 9495 , ϕ 1 = 0 . 7814 , ϕ 2 = 0 . 9898 , ψ 1 = 0 . 6093 , 

ψ 2 = 0 . 9324 , β = 6 . 2302 × 10 

−4 , κ = 1 . 003 × 10 

−11 , μ = 0 . 2113 , 

ω = 1 . 0018 , ω 

′ = 1 . 0012 , γ = 0 . 3026 , γ ′ = 0 . 0524 , 

As can be seen from Fig. 2 that, the root-mean square error between the numerical solutions of three-term fractional SEIAR

model and the real data is rMSE = 2 . 6041 , which implies that the three-term fractional SEIAR model can provide better fit

to the real data than the integer order and single-term fractional models. 

8. Conclusion 

In this paper, we reviewed the fractional epidemic model and proposed a general fractional-order epidemic models sys- 

tem and a multi-term fractional-order SEIAR Model of Norovirus system based on the Caputo fractional derivative. We use 

the modified hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) algorithm to estimate 

the parameters for fractional differential equations and the multi-term fractional differential equations. Based on the numer- 

ical solutions obtained by the GMMP scheme and Newton method, the MH-NMSS-PSO is used to estimate parameters for the 

single-term and multi-term fractional-order equations. Numerical results show that the GMMP scheme and MH-NMSS-PSO 

are efficient and valid and the fractional models provide an excellent fit to the real data. Furthermore, the multi-term frac-

tional SEIAR model provides better fit to the real data than the integer order and single-term fractional SEIAR models. This

study also demonstrates that the general fraction model mentioned in this paper can predict the number of the infectious 

people accurately and help the concerned bodies such as policy makers, stake holders and healthy professionals in making 

well informed decisions in preventing or controlling a potential outbreak in their community, the fractional epidemic mod- 

els can be a powerful tool that allow us to optimize the use of limited resources of simply to target control measures more

efficiently and help us to understand the global dynamics of the spread of infectious disease. 
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